

High-energy physics today: do theory and accelerator-based experiments continue to inspire each other?

Biswarup Mukhopadhyaya
Indian Institute of
Science Education and Research Kolkata, India

SINP, February, 2026

...

The absence of any new fundamental physics signals at energies \approx TeV

\Rightarrow Confusion among both high-energy theorists and experimentalists

*Theorists: Why should they explore new physics scenarios endlessly, while there is **no concrete evidence**?*

*Experimentalists: What is the physics motivation for ever-active refinement of technicalities, in terms of simulation/analysis/hardware, unless there is a **glimpse of something**?*

Remember Luigi Pirandello's play

'Six Characters in Search of an Author':

"We think we understand each other, but we never really do"

And, understanding there has to be....

- *One option: we continue with theoretical/experimental work, each as an end-in-itself.*

And, understanding there has to be....

- *One option: we continue with theoretical/experimental work, each as an end-in-itself.*
- *The other: make the most of whatever we learn incrementally, and let theory and experiment go hand-in-hand, keeping in touch with the basics, so that we are not decoupled from the big picture. It obviates why we are doing whatever we are doing.*

And, understanding there has to be....

- *One option: we continue with theoretical/experimental work, each as an end-in-itself.*
- *The other: make the most of whatever we learn incrementally, and let theory and experiment go hand-in-hand, keeping in touch with the basics, so that we are not decoupled from the big picture. It obviates why we are doing whatever we are doing.*
- *We adopt the second option here, keeping in touch with some 'humble big picture'.
Bigger ones will emerge in due time.*

- *One option: we continue with theoretical/experimental work, each as an end-in-itself.*
- *The other: make the most of whatever we learn incrementally, and let theory and experiment go hand-in-hand, keeping in touch with the basics, so that we are not decoupled from the big picture. It obviates why we are doing whatever we are doing.*
- *We adopt the second option here, keeping in touch with some 'humble big picture'.
Bigger ones will emerge in due time.*
- *As examples, we take up two cases related to the 125-GeV scalar discovered in 2012 (The Higgs or a Higgs-like boson).*

Extension of SM in the electroweak symmetry breaking sector: some motivations:

- *The vacuum stability problem: an extended Higgs sector can postpone it upto the Planck scale*

Extension of SM in the electroweak symmetry breaking sector: some motivations:

- *The vacuum stability problem: an extended Higgs sector can postpone it upto the Planck scale*
- *Additional CP-violating phases: a possible mechanism for creating baryon asymmetry in the universe*

Extension of SM in the electroweak symmetry breaking sector: some motivations:

- *The vacuum stability problem: an extended Higgs sector can postpone it upto the Planck scale*
- *Additional CP-violating phases: a possible mechanism for creating baryon asymmetry in the universe*
- *A portal for WIMP dark matter. Additional scalars can participate as portal, surviving even LZ constraints.*

Extension of SM in the electroweak symmetry breaking sector: some motivations:

- *The vacuum stability problem: an extended Higgs sector can postpone it upto the Planck scale*
- *Additional CP-violating phases: a possible mechanism for creating baryon asymmetry in the universe*
- *A portal for WIMP dark matter. Additional scalars can participate as portal, surviving even LZ constraints.*
- *The question of whether it is 'the Higgs' or 'a Higgs' is therefore worth pursuing.*

- *If there is new physics, the 125-GeV scalar should show departure from SM behaviour via mixing with other scalars*

- *If there is new physics, the 125-GeV scalar should show departure from SM behaviour via mixing with other scalars*
- *Small departure (as per constraints coming from Higgs data)*
⇒ *Seeing effects will require the HL-LHC*
 $(\int \mathcal{L} dt \gtrsim 3000 \text{fb}^{-1})$

- *If there is new physics, the 125-GeV scalar should show departure from SM behaviour via mixing with other scalars*
- *Small departure (as per constraints coming from Higgs data)*
⇒ *Seeing effects will require the HL-LHC*
$$(\int \mathcal{L} dt \gtrsim 3000 \text{fb}^{-1})$$
- *Pro: High luminosity ⇒ Higher statistical significance*

- *If there is new physics, the 125-GeV scalar should show departure from SM behaviour via mixing with other scalars*
- *Small departure (as per constraints coming from Higgs data)*
⇒ *Seeing effects will require the HL-LHC*
$$(\int \mathcal{L} dt \gtrsim 3000 \text{fb}^{-1})$$
- *Pro: High luminosity ⇒ Higher statistical significance*
- *Con: Challenges from pile-up, systematics etc.*

Di-Higgs production....

- $\mathcal{L} = (1/2)m_h^2 h^2 + \lambda_{SM} v h^3 + (1/4)\lambda_{SM} h^4$
 $\lambda_{SM} = m_h^2/(2v^2)$, $v = \text{Higgs vev} \approx 246 \text{ GeV}$
(known from m_W -measurement)

Di-Higgs production....

- $\mathcal{L} = (1/2)m_h^2 h^2 + \lambda_{SM} v h^3 + (1/4)\lambda_{SM} h^4$
 $\lambda_{SM} = m_h^2/(2v^2)$, $v = \text{Higgs vev} \approx 246 \text{ GeV}$
(known from m_W -measurement)
- $m_h \approx 125 \text{ GeV} \Rightarrow \lambda_{SM} \approx 0.129$

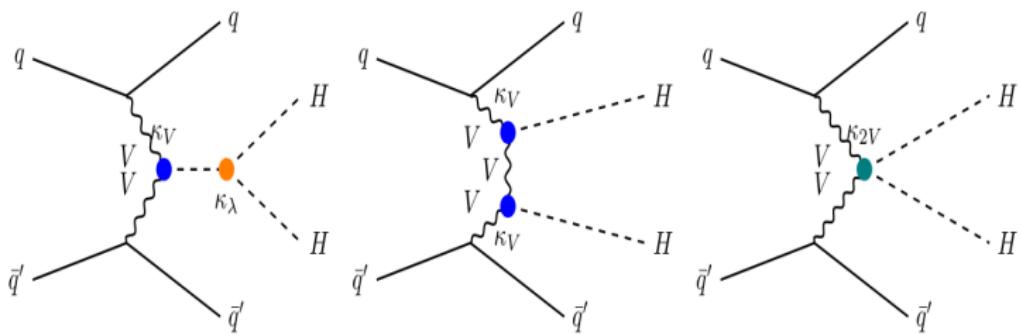
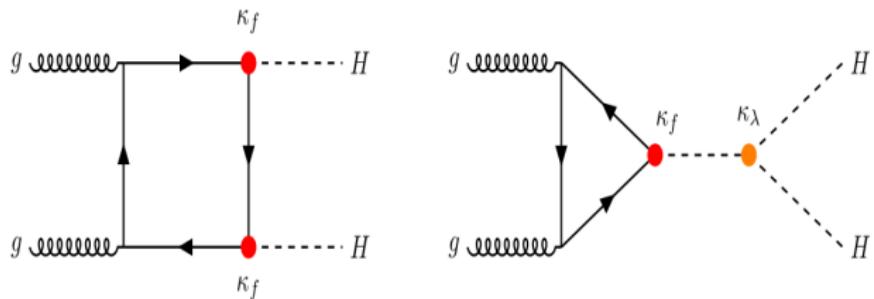
Di-Higgs production....

- $\mathcal{L} = (1/2)m_h^2 h^2 + \lambda_{SM} v h^3 + (1/4)\lambda_{SM} h^4$
 $\lambda_{SM} = m_h^2/(2v^2)$, $v = \text{Higgs vev} \approx 246 \text{ GeV}$
(known from m_W -measurement)
- $m_h \approx 125 \text{ GeV} \Rightarrow \lambda_{SM} \approx 0.129$
- λ_{SM} measured precisely will decisively tell us whether h is the SM Higgs boson

Di-Higgs production....

- $\mathcal{L} = (1/2)m_h^2 h^2 + \lambda_{SM} v h^3 + (1/4)\lambda_{SM} h^4$
 $\lambda_{SM} = m_h^2/(2v^2)$, $v = \text{Higgs vev} \approx 246 \text{ GeV}$
(known from m_W -measurement)
- $m_h \approx 125 \text{ GeV} \Rightarrow \lambda_{SM} \approx 0.129$
- λ_{SM} measured precisely will decisively tell us whether h is the SM Higgs boson
- Problem 1: Signals are small , with large backgrounds

Di-Higgs production....



- $\mathcal{L} = (1/2)m_h^2 h^2 + \lambda_{SM} v h^3 + (1/4)\lambda_{SM} h^4$
 $\lambda_{SM} = m_h^2/(2v^2)$, $v = \text{Higgs vev} \approx 246 \text{ GeV}$
(known from m_W -measurement)
- $m_h \approx 125 \text{ GeV} \Rightarrow \lambda_{SM} \approx 0.129$
- λ_{SM} measured precisely will decisively tell us whether h is the SM Higgs boson
- Problem 1: Signals are small, with large backgrounds
- Problem 2: There are other interfering contributions

Di-Higgs production....

- $\mathcal{L} = (1/2)m_h^2 h^2 + \lambda_{SM} v h^3 + (1/4)\lambda_{SM} h^4$
 $\lambda_{SM} = m_h^2/(2v^2)$, $v = \text{Higgs vev} \approx 246 \text{ GeV}$
(known from m_W -measurement)
- $m_h \approx 125 \text{ GeV} \Rightarrow \lambda_{SM} \approx 0.129$
- λ_{SM} measured precisely will decisively tell us whether h is the SM Higgs boson
- Problem 1: Signals are small, with large backgrounds
- Problem 2: There are other interfering contributions
- Problem 3: Radiative corrections (mainly QCD) bring in uncertainties

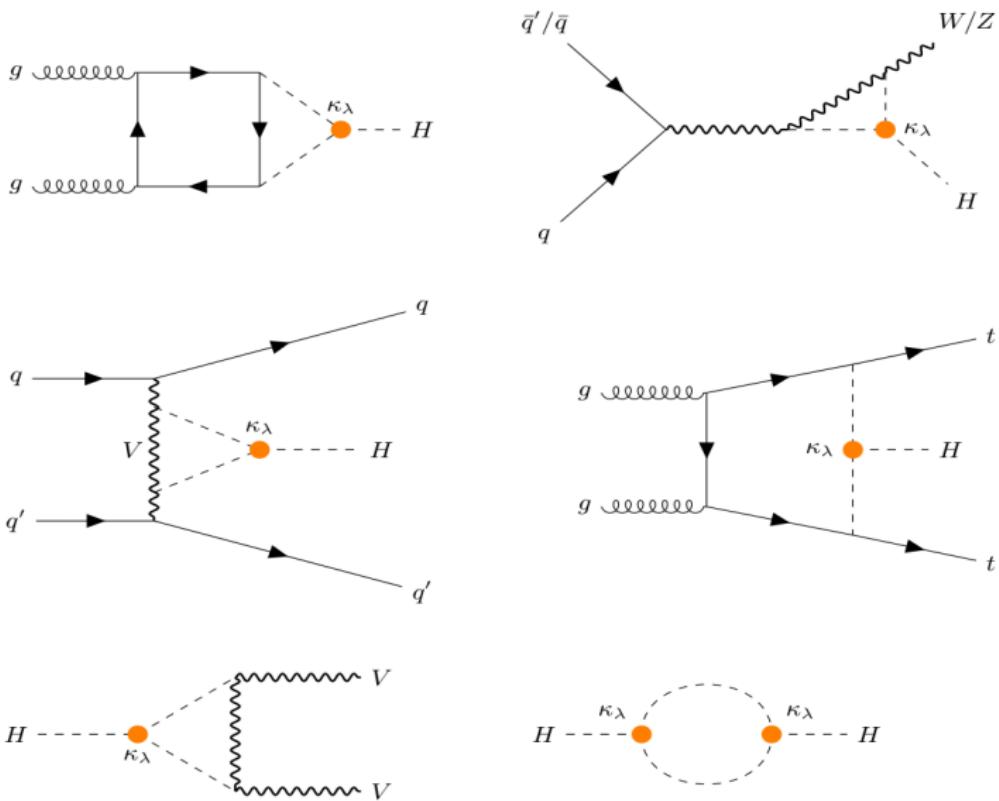
Di-Higgs production....

- $\mathcal{L} = (1/2)m_h^2 h^2 + \lambda_{SM} v h^3 + (1/4)\lambda_{SM} h^4$
 $\lambda_{SM} = m_h^2/(2v^2)$, $v = \text{Higgs vev} \approx 246 \text{ GeV}$
(known from m_W -measurement)
- $m_h \approx 125 \text{ GeV} \Rightarrow \lambda_{SM} \approx 0.129$
- λ_{SM} measured precisely will decisively tell us whether h is the SM Higgs boson
- Problem 1: Signals are small, with large backgrounds
- Problem 2: There are other interfering contributions
- Problem 3: Radiative corrections (mainly QCD) bring in uncertainties
- Experimentally, with $\kappa = \lambda/\lambda_{SM}$,
at 95% CL with 140 fb^{-1} , $-1.2 < \kappa < 7.2$ (ATLAS, 2025),
 $-1.4 < \kappa < 7.8$ (CMS, 2025)

Challenges in extracting $\kappa_\lambda = \lambda/\lambda_{SM}$

- *The lowest-order production channels in gluon fusion: the κ_λ -driven contribution has destructive interference with top-driven loop diagrams.*
Therefore, the latter have to be precisely computed.

Challenges in extracting $\kappa_\lambda = \lambda/\lambda_{SM}$


- *The lowest-order production channels in gluon fusion: the κ_λ -driven contribution has destructive interference with top-driven loop diagrams.*
Therefore, the latter have to be precisely computed.
- *The gluon fusion process also depends on a likely κ_t , if really $\kappa_\lambda \neq 1$.*

Challenges in extracting $\kappa_\lambda = \lambda/\lambda_{SM}$

- *The lowest-order production channels in gluon fusion: the κ_λ -driven contribution has destructive interference with top-driven loop diagrams.*
Therefore, the latter have to be precisely computed.
- *The gluon fusion process also depends on a likely κ_t , if really $\kappa_\lambda \neq 1$.*
- *Similarly, the vector boson fusion (VBF) and top-Higgstrahlung contributions involve κ_V , κ_{2V} , κ_t*

Challenges in extracting $\kappa_\lambda = \lambda/\lambda_{SM}$

- *The lowest-order production channels in gluon fusion: the κ_λ -driven contribution has destructive interference with top-driven loop diagrams.*
Therefore, the latter have to be precisely computed.
- *The gluon fusion process also depends on a likely κ_t , if really $\kappa_\lambda \neq 1$.*
- *Similarly, the vector boson fusion (VBF) and top-Higgstrahlung contributions involve κ_V , κ_{2V} , κ_t*
- *Thus, considering lowest-order contributions alone, the best fit for κ_λ remains highly entangled, and also model-dependent*

Challenges in extracting $\kappa_\lambda = \lambda/\lambda_{SM}$

- *Electroweak corrections, too, involve κ_λ . Thus, precise estimate of the dihiggs production rate involve κ_λ non-linearly.*

Challenges in extracting $\kappa_\lambda = \lambda/\lambda_{SM}$

- *Electroweak corrections, too, involve κ_λ . Thus, precise estimate of the dihiggs production rate involve κ_λ non-linearly.*
- *Higher order QCD effects: a whole industry*

Challenges in extracting $\kappa_\lambda = \lambda/\lambda_{SM}$

- *Electroweak corrections, too, involve κ_λ . Thus, precise estimate of the dihiggs production rate involve κ_λ non-linearly.*
- *Higher order QCD effects: a whole industry*
-

Challenges in extracting $\kappa_\lambda = \lambda/\lambda_{SM}$

- *The decays of the produced di-higgs pairs are subject to QCD correction*

Challenges in extracting $\kappa_\lambda = \lambda/\lambda_{SM}$

- *The decays of the produced di-higgs pairs are subject to QCD correction*
- $pp \rightarrow hh \rightarrow 4b, 2b2\tau, 2bWW, 2b\gamma\gamma$

Challenges in extracting $\kappa_\lambda = \lambda/\lambda_{SM}$

- *The decays of the produced di-higgs pairs are subject to QCD correction*
- $pp \rightarrow hh \rightarrow 4b, 2b2\tau, 2bWW, 2b\gamma\gamma$
- *The electroweak final state pairs are immune to QCD corrections, and contribute to the rates via the fiducial branching ratios only.*

Challenges in extracting $\kappa_\lambda = \lambda/\lambda_{SM}$

- *The decays of the produced di-higgs pairs are subject to QCD correction*
- $pp \rightarrow hh \rightarrow 4b, 2b2\tau, 2bWW, 2b\gamma\gamma$
- *The electroweak final state pairs are immune to QCD corrections, and contribute to the rates via the fiducial branching ratios only.*
- *Overall, The 2b part is subject to substantial corrections due to soft and collinear effects. But parton showers wash out the uncertainties caused by them.*
arXiv:2509.13304,

Challenges in extracting $\kappa_\lambda = \lambda/\lambda_{SM}$

- The decays of the produced di-higgs pairs are subject to QCD correction
- $pp \rightarrow hh \rightarrow 4b, 2b2\tau, 2bWW, 2b\gamma\gamma$
- The electroweak final state pairs are immune to QCD corrections, and contribute to the rates via the fiducial branching ratios only.
- Overall, The 2b part is subject to substantial corrections due to soft and collinear effects. But parton showers wash out the uncertainties caused by them.
arXiv:2509.13304,
- $b\bar{b}WW, b\bar{b}WW$ final states: Crucial are the MET measurements: connected with
 - (a) Variables like MT2 which help in filtering out the signals
 - (b) Jet reconstruction

Challenges brought in by theoretical issues...

- *Proper event selection criteria*

Challenges brought in by theoretical issues...

- *Proper event selection criteria*
- *Jet algorithm*

Challenges brought in by theoretical issues...

- *Proper event selection criteria*
- *Jet algorithm*
- *Refining b -and τ -identification*

Challenges brought in by theoretical issues...

- *Proper event selection criteria*
- *Jet algorithm*
- *Refining b -and τ -identification*
- *Reduction of systematics*

Challenges brought in by theoretical issues...

- *Proper event selection criteria*
- *Jet algorithm*
- *Refining b -and τ -identification*
- *Reduction of systematics*
- *Optimal best fit derivation techniques*

Challenges brought in by theoretical issues...

- *Proper event selection criteria*
- *Jet algorithm*
- *Refining b -and τ -identification*
- *Reduction of systematics*
- *Optimal best fit derivation techniques*
-

Light pseudoscalars in two-Higgs doublet modes (2HDM)....

- *In well-motivated extended scalar scenarios, scalars much lighter than 125 GeV can exist consistently with all current data and constraints.*

Light pseudoscalars in two-Higgs doublet modes (2HDM)....

- *In well-motivated extended scalar scenarios, scalars much lighter than 125 GeV can exist consistently with all current data and constraints.*
- *Example: Type-X and Flipped 2HDM*

Light pseudoscalars in two-Higgs doublet modes (2HDM)....

- *In well-motivated extended scalar scenarios, scalars much lighter than 125 GeV can exist consistently with all current data and constraints.*
- *Example: Type-X and Flipped 2HDM*
- *In each 2HDM, the physical spin-0 states are $h \rightarrow h, H, H^\pm, A$*

Light pseudoscalars in two-Higgs doublet modes (2HDM)....

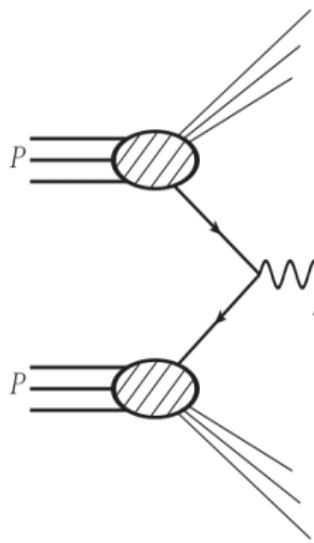
- *In well-motivated extended scalar scenarios, scalars much lighter than 125 GeV can exist consistently with all current data and constraints.*
- *Example: Type-X and Flipped 2HDM*
- *In each 2HDM, the physical spin-0 states are $h \rightarrow h, H, H^\pm, A$*
- *The CP-odd state A in both models above can be as light as 30 - 40 GeV. How?*

Light pseudoscalars in two-Higgs doublet modes (2HDM)....

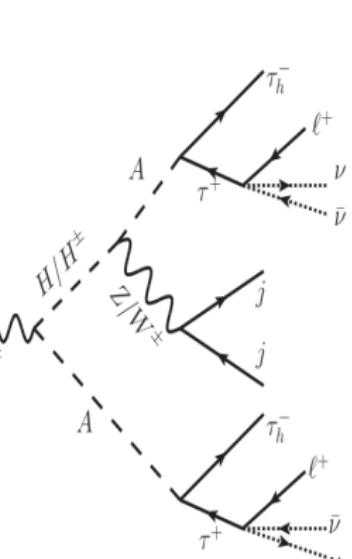
- *In well-motivated extended scalar scenarios, scalars much lighter than 125 GeV can exist consistently with all current data and constraints.*
- *Example: Type-X and Flipped 2HDM*
- *In each 2HDM, the physical spin-0 states are $h \rightarrow h, H, H^\pm, A$*
- *The CP-odd state A in both models above can be as light as 30 - 40 GeV. How?*
- *In Type-X, A couples mostly to lepton pairs
⇒ Production processes suppressed
In flipped 2HDM, A decays largely into $b\bar{b}$
 $b\bar{b}$ decay channels are buried in backgrounds*

Light pseudoscalars in two-Higgs doublet modes (2HDM)....

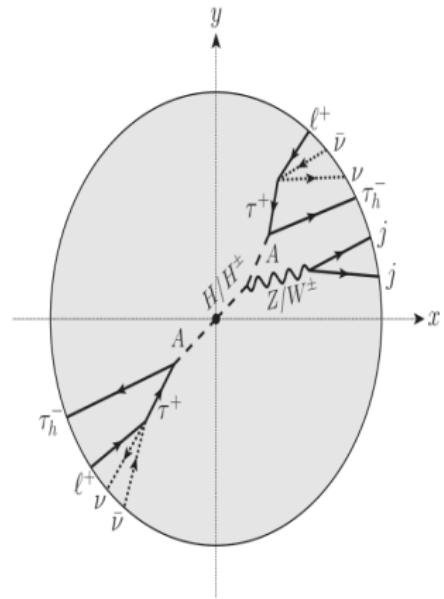
- *In well-motivated extended scalar scenarios, scalars much lighter than 125 GeV can exist consistently with all current data and constraints.*
- *Example: Type-X and Flipped 2HDM*
- *In each 2HDM, the physical spin-0 states are $h \rightarrow h, H, H^\pm, A$*
- *The CP-odd state A in both models above can be as light as 30 - 40 GeV. How?*
- *In Type-X, A couples mostly to lepton pairs
⇒ Production processes suppressed
*In flipped 2HDM, A decays largely into $b\bar{b}$
 $b\bar{b}$ decay channels are buried in backgrounds**
- *Q: How to see such light pseudoscalars at the HL-LHC?
The answer depends on several issues that are best addressed by experimentalists*


- *One Higgs doublet give masses to quarks alone, the other, to leptons alone*

- *One Higgs doublet give masses to quarks alone, the other, to leptons alone*
- *A has strongest coupling to $\tau\bar{\tau}$ -pairs*


- *One Higgs doublet give masses to quarks alone, the other, to leptons alone*
- *A has strongest coupling to $\tau\bar{\tau}$ -pairs*
- *Light A: an electroweak signal channel is $pp \rightarrow h \rightarrow AA^{(*)} \rightarrow 4\tau, \tau\tau\mu\mu$*

- *One Higgs doublet give masses to quarks alone, the other, to leptons alone*
- *A has strongest coupling to $\tau\bar{\tau}$ -pairs*
- *Light A: an electroweak signal channel is $pp \rightarrow h \rightarrow AA^{(*)} \rightarrow 4\tau, \tau\tau\mu\mu$*
- *But LHC data on $4\tau, \tau\tau\mu\mu$ put a strong limit on hAA coupling*


- *One Higgs doublet give masses to quarks alone, the other, to leptons alone*
- *A has strongest coupling to $\tau\bar{\tau}$ -pairs*
- *Light A: an electroweak signal channel is $pp \rightarrow h \rightarrow AA^{(*)} \rightarrow 4\tau, \tau\tau\mu\mu$*
- *But LHC data on $4\tau, \tau\tau\mu\mu$ put a strong limit on hAA coupling*
- *Thus, direct signals has been looked for via electroweak cascade*

(a)

(b)

$\tau^+\tau^-\tau^+\tau^-$ identification

- *Two same-sign tau-jets (j_τ)*
+

$\tau^+\tau^-\tau^+\tau^-$ identification

- *Two same-sign tau-jets (j_τ)*
+
- *Two same-sign leptons (e, μ)*
 j_τ identification efficiency $\simeq 99\%$ in 1-prong, $\simeq 70\%$ in 3-prong
(CMS, *J. Instr.* 17, P07023 (2022))

$\tau^+\tau^-\tau^+\tau^-$ identification

- *Two same-sign tau-jets (j_τ)*
+
- *Two same-sign leptons (e, μ)*
 j_τ identification efficiency $\simeq 99\%$ in 1-prong, $\simeq 70\%$ in 3-prong
(CMS, *J. Instr.* 17, P07023 (2022))
- *Use angular correlation of same-sign j_τ -pairs and same-sign ℓ pairs in the azimuthal plane, together with other kinematic cuts.*

$\tau^+\tau^-\tau^+\tau^-$ identification

- *Two same-sign tau-jets (j_τ)*
+
- *Two same-sign leptons (e, μ)*
 j_τ identification efficiency $\simeq 99\%$ in 1-prong, $\simeq 70\%$ in 3-prong
(CMS, *J. Instr.* 17, P07023 (2022))
- *Use angular correlation of same-sign j_τ -pairs and same-sign ℓ pairs in the azimuthal plane, together with other kinematic cuts.*
- *For $m_A \approx 63 - 70 \text{ GeV}$, $\int \mathcal{L} dt = 3000 \text{ fb}^{-1}$, $5\sigma(3\sigma)$ significance with 10%(20%) systematics*

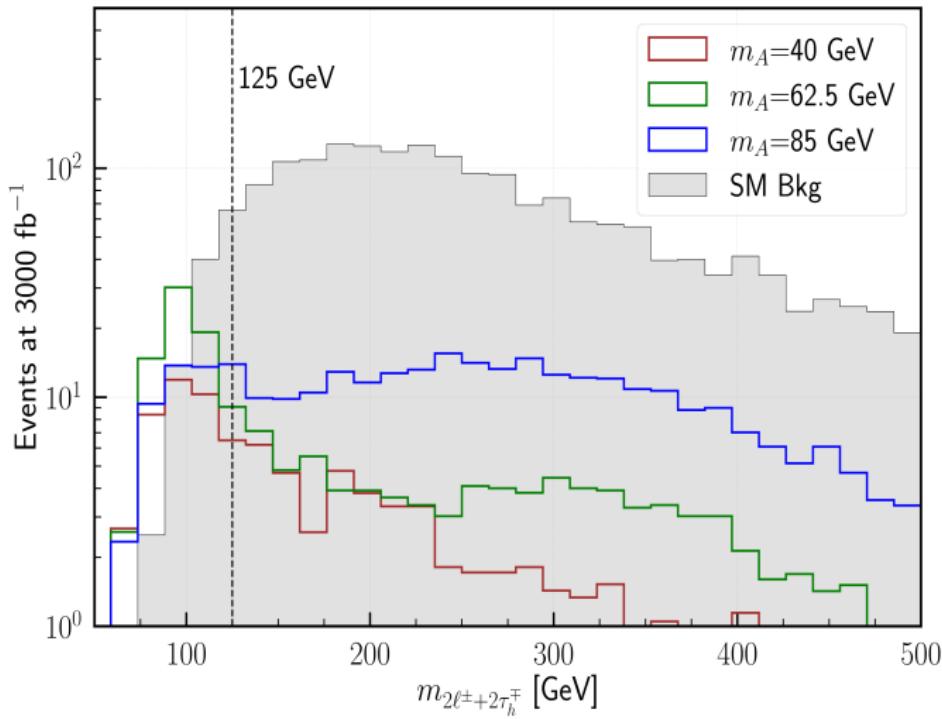
$\tau^+\tau^-\tau^+\tau^-$ identification

- *Two same-sign tau-jets (j_τ)*
+
- *Two same-sign leptons (e, μ)*
 j_τ identification efficiency $\simeq 99\%$ in 1-prong, $\simeq 70\%$ in 3-prong
(CMS, *J. Instr.* 17, P07023 (2022))
- *Use angular correlation of same-sign j_τ -pairs and same-sign ℓ pairs in the azimuthal plane, together with other kinematic cuts.*
- *For $m_A \approx 63 - 70 \text{ GeV}$, $\int \mathcal{L} dt = 3000 \text{ fb}^{-1}$, $5\sigma(3\sigma)$ significance with $10\%(20\%)$ systematics*
- *Challenges:*
 - (a) *Improved jet reconstruction algorithm and τ -tagging*
 - (b) *reduction of overall systematics at HL-LHC*

When we learned more...

- *Inspite of the restricted hAA coupling, use not electroweak cascade but the h -mediated channel, via gluon fusion:*
 $pp \rightarrow gg \rightarrow h \rightarrow AA^{(*)} \rightarrow 4\tau \rightarrow j_\tau^+ j_\tau^+ \ell^- \ell^-$

When we learned more...


- *Inspite of the restricted hAA coupling, use not electroweak cascade but the h -mediated channel, via gluon fusion:*
 $pp \rightarrow gg \rightarrow h \rightarrow AA^{(*)} \rightarrow 4\tau \rightarrow j_\tau^+ j_\tau^+ \ell^- \ell^-$
- *Enhancement via low- x gluon flux offsets the loss of events, for both real and virtual A*

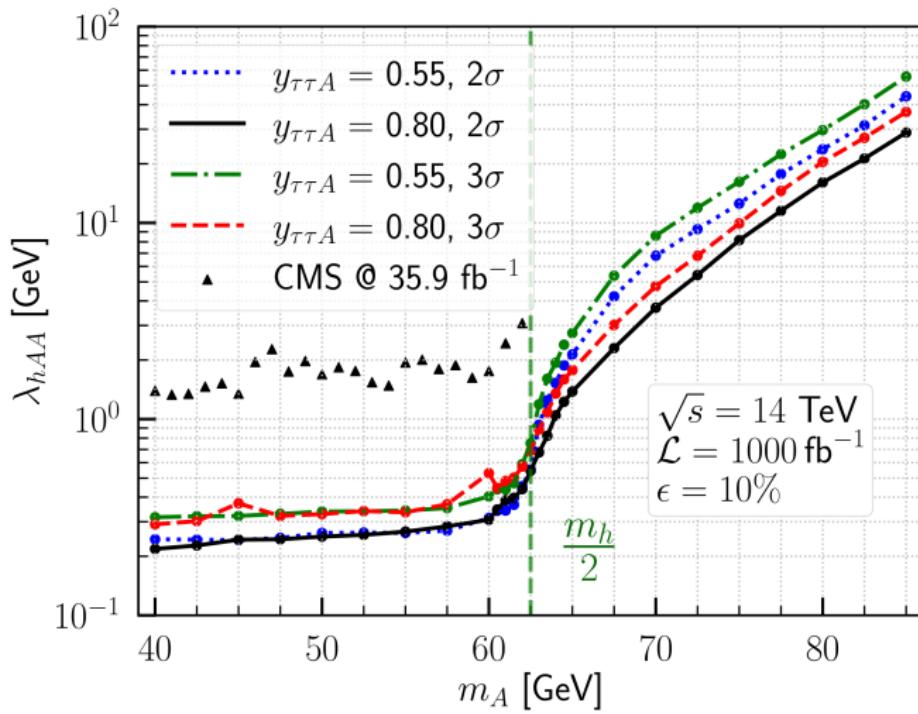
When we learned more...

- *Inspite of the restricted hAA coupling, use not electroweak cascade but the h-mediated channel, via gluon fusion:*
 $pp \rightarrow gg \rightarrow h \rightarrow AA^{(*)} \rightarrow 4\tau \rightarrow j_\tau^+ j_\tau^+ \ell^- \ell^-$
- *Enhancement via low-x gluon flux offsets the loss of events, for both real and virtual A*
- *The signal significance gets assisted by*
 1. *j_τ charge identification and azimuthal angle correlations.*
 2. *Low $m_{inv}(j_\tau^+ j_\tau^+ \ell^- \ell^-)$*

When we learned more...

- *Inspite of the restricted hAA coupling, use not electroweak cascade but the h -mediated channel, via gluon fusion:*
 $pp \rightarrow gg \rightarrow h \rightarrow AA^{(*)} \rightarrow 4\tau \rightarrow j_\tau^+ j_\tau^+ \ell^- \ell^-$
- *Enhancement via low- x gluon flux offsets the loss of events, for both real and virtual A*
- *The signal significance gets assisted by*
 1. j_τ charge identification and azimuthal angle correlations.
 2. Low $m_{inv}(j_\tau^+ j_\tau^+ \ell^- \ell^-)$
- *The backgrounds have relatively high 'effective mass'*

....


- *Incorporating the above strategies, one can probe even $m_A < m_h/2$, with hAA couplings well below the CMS limits*

....

- *Incorporating the above strategies, one can probe even $m_A < m_h/2$, with hAA couplings well below the CMS limits*
- *Even with 1000fb^{-1} ,
one can probe $m_A \approx 40 - 85 \text{ GeV}$
at $> 3\sigma$ level, for 10% overall systematics*

....

- Incorporating the above strategies, one can probe even $m_A < m_h/2$, with hAA couplings well below the CMS limits
- Even with 1000fb^{-1} ,
one can probe $m_A \approx 40 - 85 \text{ GeV}$
at $> 3\sigma$ level, for 10% overall systematics
- Improved τ -jet charge sign identification in 3-prong decays helps

- *One doublet couples to $\{u\ c\ t\}$, $\{e\mu\tau\}$,
The other one, to $\{d\ s\ b\}$*

- One doublet couples to $\{u\ c\ t\}$, $\{e\mu\tau\}$,
The other one, to $\{d\ s\ b\}$
- Light A : decays overwhelmingly into $b\bar{b}$
 \Rightarrow Signals get buried under backgrounds
 $\Rightarrow m_A \approx 20 - 60\text{ GeV}$ are consistent with present constraints

- One doublet couples to $\{u\ c\ t\}$, $\{e\mu\tau\}$,
The other one, to $\{d\ s\ b\}$
- Light A : decays overwhelmingly into $b\bar{b}$
 \Rightarrow Signals get buried under backgrounds
 $\Rightarrow m_A \approx 20 - 60\text{ GeV}$ are consistent with present constraints
- Problem: identifying appropriate tags to suppress backgrounds

- One doublet couples to $\{u\ c\ t\}$, $\{e\ \mu\ \tau\}$,
The other one, to $\{d\ s\ b\}$
- Light A : decays overwhelmingly into $b\bar{b}$
 \Rightarrow Signals get buried under backgrounds
 $\Rightarrow m_A \approx 20 - 60\text{ GeV}$ are consistent with present constraints
- Problem: identifying appropriate tags to suppress backgrounds
- $pp \rightarrow h \rightarrow AZ(Z^*) \rightarrow (b\bar{b})_{m_A} + \ell^+\ell^-$

- One doublet couples to $\{u\ c\ t\}$, $\{e\ \mu\ \tau\}$,
The other one, to $\{d\ s\ b\}$
- Light A : decays overwhelmingly into $b\bar{b}$
 \Rightarrow Signals get buried under backgrounds
 $\Rightarrow m_A \approx 20 - 60 \text{ GeV}$ are consistent with present constraints
- Problem: identifying appropriate tags to suppress backgrounds
- $pp \rightarrow h \rightarrow AZ(Z^*) \rightarrow (b\bar{b})_{m_A} + \ell^+\ell^-$
- Low-mass A
 \Rightarrow Relatively soft b -jets \Rightarrow Low b -tagging efficiency

- *Not enough events to exhibit distinguishable $\ell^+ \ell^-$ peaks from on-shell Z , simultaneously with the $b\bar{b}$ -peak*

- *Not enough events to exhibit distinguishable $\ell^+ \ell^-$ peaks from on-shell Z , simultaneously with the $b\bar{b}$ -peak*
- *On-shell Z + b -identification requirement pushes one to the edge of the fiducial phase space*

- *Not enough events to exhibit distinguishable $\ell^+ \ell^-$ peaks from on-shell Z , simultaneously with the $b\bar{b}$ -peak*
- *On-shell $Z + b$ -identification requirement pushes one to the edge of the fiducial phase space*
- *Off-shell Z contributions have to be included*

- *Not enough events to exhibit distinguishable $\ell^+ \ell^-$ peaks from on-shell Z , simultaneously with the $b\bar{b}$ -peak*
- *On-shell $Z + b$ -identification requirement pushes one to the edge of the fiducial phase space*
- *Off-shell Z contributions have to be included*
- *Criteria that comes to one's rescue:*
 - (a) $MET \leq 40$ GeV
 - (b) $m_{inv}[(b\bar{b})_{m_A} \ell^+ \ell^-] \approx m_h$
 - (c) *In addition, an $m_{(b\bar{b})}$ peak at m_A rises above the continuum background by about one order*

....

- *The use of BDT improves cut-based results*

....

- *The use of BDT improves cut-based results*
- *With 3000fb^{-1} , predicted significance for $m_A \approx 20 - 60\text{GeV}$ $6.8\sigma - 3.8\sigma$ even for 20% systematic uncertainty*

....

- *The use of BDT improves cut-based results*
- *With 3000fb^{-1} , predicted significance for $m_A \approx 20 - 60\text{GeV}$ $6.8\sigma - 3.8\sigma$ even for 20% systematic uncertainty*
- *Additinal challenge:*
 - (a) *Improving b-tagging efficiency at low-energy*
 - (b) *Overall systematics which enables detection even with 1000fb^{-1}*

....

“Life is full of strange absurdities, which do not need to appear plausible, since they are true.”

— *Luigi Pirandello, Six Characters in Search of an Author*