GeV-TeV Radiation in GRBs and Insights on Cosmis Rays

Jagdish C. Joshi Aryabhatta Research Institute of Observational Sciences

ICHEPAP2023

15/12/2023

Collaboration: Soebur Razzaque, CAPP, Johannesburg

Monica Barnard, CAPP, Johannesburg

Vikas Chand, ARCO, Israel

Abhijit Roy, Khushboo Sharma (ARIES)

Outline

Introduction

- Gamma Ray Bursts Emission
- Radiation Mechanism in GRBs

GeV-TeV GRBs in Afterglows

Constrains on the Radiation Mechanisms

Neutrino from GRBs

• GRB Classes and Neutrino/CR Fluxes

Summary and Conclusion

Gamma Ray Bursts (GRBs)

- GRBs are transient and extra-galactic objects: Red-shift (z): 0.008 to 9.4.
- The Isotropic gamma-ray (keV-MeV) energy released during the prompt phase: 10^{49} to 10^{55} erg. $[M_{\odot}c^2 \sim 2 \times 10^{54} \text{ erg}]$
- The GRB event lasts from ms to 1000's second, however, the afterglow duration is prolonged.

Eletromagnetic signature:

• Radio to TeV gamma rays.

Non-electromagnetic signature:

• Cosmic Rays and Neutrinos + Gravitational waves.

Fireball Model: Shock Formation

Expansion due to radiation pressure:

$$\begin{aligned} R_0 &\approx 10^7 \text{ cm}, \quad L \sim 10^{52} \text{erg/s} \\ L &= 4\pi r_0^2 \sigma T^4, \quad T = 1.7 \text{MeV} \end{aligned}$$

External Shocks form when:

$$\frac{E_k}{2} = \Gamma_0^2 M_{\rm sw} c^2$$

4

GRB Luminosity vs Lorentz Factor

Based on the kinetic energy in the afterglow and circumburst medium density.

GRBs: Prompt Radiation

8000 Highly variable prompt gamma-ray emission. 6000 $R_s \leq \Gamma c \delta t; \quad \Gamma[100 - 1000] \quad \delta t[ms - s]$ Counts/sec 4000 BATSE 48 Cotoloo 80 2000 Long bursts T₉₀>2s 60 NUMBER OF BURSTS D 10 20 30 50 40 0 Short bursts t T₉₀<25 40 Two source population!! 20 **Based on the duration of prompt** gamma-ray emission. 0.001 0.01 100. 0.1 10. 1000. 1 T_{eo} (seconda)

GRBs: Prompt Radiation

Non-thermal only: Poynting jet

GRBs: Afterglow Radiation

• After the prompt radiation a prolonged radiation is observed.

GRBs: Afterglow Radiation

• After the prompt radiation a prolonged radiation is observed.

Open Questions: Prompt/Afterglow

- GRB jet composition and their radiative efficiency
- Energy dissipation mechanisms in the jet: Thermal vs Nonthermal,
- Radius of the prompt and afterglow emission,
- Radiation mechanism: Radio to TeV emission,
- Do GRBs produce cosmic rays and neutrinos?

Open Questions: Prompt/Afterglow

- GRB jet composition and their radiative efficiency
- Energy dissipation mechanisms in the jet: Thermal vs Nonthermal,
- Radius of the prompt and afterglow emission,
- Radiation mechanism: Radio to TeV emission,
- Do GRBs produce cosmic rays and neutrinos?

Radiation Mechanism in GRBs: Radio to TeV Afterglows

Afterglow Radiation and Environments

Expected for massive stars with substantial mass loss in stellar wind

Blast Wave Dynamics: Parameters

The BLF (Γ) of the external shock:

$$\Gamma \simeq \begin{cases} \left(\frac{E_k v_w}{4\dot{M}c^3 t}\right)^{1/4}; & \text{WIND} \\ \left(\frac{3E_k}{8\pi\rho_0 c^5 t^3}\right)^{1/8}; & \text{ISM} \end{cases}$$

Afterglow Model Parameters:

- **E**_k : Isotropic equivalent kinetic energy in afterglow
- **Г**o : Bulk Lorentz factor
- **A***, **n**₀ : Circumburst medium density
- **p** : Spectral index of accelerated particles
- $\boldsymbol{\epsilon}_{B,}\boldsymbol{\epsilon}_{e}$: Fraction of shock energy going to electrons and magnetic field.
- Total shock energy is distributed among particles and magnetic fields.

$$\boldsymbol{\epsilon}_{B} + \boldsymbol{\epsilon}_{e} + \boldsymbol{\epsilon}_{A} \sim \mathbf{1}$$

Radiative process efficiency: VHE

 $E_{\gamma}^2 \cdot \frac{dN_{\gamma}}{dN_{\gamma}}$

$$\kappa = \frac{t_{\rm dyn}}{t_{\rm cool}} \ge 1 \implies \text{Efficient Process}$$

$$\kappa_{p-\gamma} \approx 3 \times 10^{-4} \left[\frac{\Gamma}{20}\right]^2 \left[\frac{R}{10^{18} \rm cm}\right] \left[\frac{\epsilon_t}{1\rm keV}\right]^{-1} n_0$$

$$\kappa_{p-p} \approx 10^{-7} \left[\frac{R}{10^{18} \rm cm}\right] n_0$$

$$\kappa_{\rm sync} \approx 5 \times 10^7 \left[\frac{R}{10^{18} \rm cm}\right] \left[\frac{\epsilon_B}{0.1}\right]^{3/4} n_0^{3/4}$$

$$\kappa_{\rm IC} = 3 \left[\frac{\Gamma}{20}\right] \left[\frac{R}{10^{18} \rm cm}\right] \left[\frac{\epsilon_t}{1\rm keV}\right]^{-1/2} n_0$$

HESS Collaboration (2019), Nature 575, 464 M. Spurio, Particles & Astrophysics, Springer

SSC Emission: Radio to TeV Radiation

Sari, Piran & Narayan (1998), ApJL 497, 17 Zhang & Meszaros (2001), ApJ 559,110 Piran & Nakar (2010) ApJL 718, 63

GeV-TeV GRBs in Afterglows

Radio to TeV Detectors

AGILE, INTEGRAL, Konus-Wind (gamma-ray), SVOM (X-ray), AstroSAT (X-ray), nuSTAR (X-ray) and Radio detectors etc.

- HESS(2003), MAGIC(2004), VERITAS(2005), HAWC(2013), LHASSO(2019), MACE (2020) and Upcoming CTA, (Few x 100 GeV – Few x 100 TeV).
- Swift BAT locates the GRB and then the afterglow emission is followed.
- Swift (2004 onwards):
 - Fermi (2008 onwards):

Burst Alert Telescope(BAT, 15-150 keV)X-ray telescope(XRT, 0.3-10 keV)Optical telescope(UVOT, 170-600 nm).

Gamma-ray burst moniter (GBM, 8 keV – 30 MeV) Large Area Telescope (LAT, 20 MeV- 300 GeV).

LHAASO (20

GeV-TeV GRB Sample

Objects	Energy Range	Туре	Eg,iso (erg)	Redshift
GRB 180720B	H.E.S.S. [100 - 440] GeV	Standard LGRB	6 x 10 ⁵³	0.658
GRB190114C	MAGIC [0.3 - 1] TeV	Standard LGRB	3 x 10 ⁵³	0.4245
GRB 190829A	H.E.S.S. [0.2 - 4] TeV	Low-Luminosity	2 x 10 ⁵⁰	0.0785
GRB 221009A	LHAASO [0.1- 7] TeV	LGRB/BOAT	3 x 10 ⁵⁴	0.151
GRB 201216C	MAGIC [70 -200] GeV	Standard LGRB	6 x 10 ⁵³	1.1

Multi-Wavelength Observations: SED

MAGIC Collaboration (2019), Nature 575, 455 HESS Collaboration (2019), Nature 575, 464 HESS Collaboration (2021), Science 372, 1081

Multi-Wavelength Observations: SED

MAGIC Collaboration (2023), MNRAS 527, 3 LHAASO Collaboration (2023), Science 380, 1390

Multi-Wavelength Observations: SED

MAGIC Collaboration (2023), MNRAS 527, 3 LHAASO Collaboration (2023), Science 380, 1390

Current Radiation Models: VHE Emission in GRBs

Signatures of IC Radiation

Max photon energy in the Thomson regime:

$$E_{\gamma,\mathrm{cut}}^{\mathrm{ssc}} \approx \frac{m_e^2 c^4}{\epsilon_t} \frac{\Gamma^2}{(1+z)^2}$$

H. Zhang et al. (2020), MNRAS 974, 2020

Signatures of IC Radiation

GRB 190114C: SSC Model

 $T_{90} > 100 \mathrm{s}$

MAGIC Detection (0.3 -1 TeV)

~55 s onwards

SSC in Thomson regime

$$Y \equiv \frac{L_{\rm SSC}}{L_{\rm Sy}} \sim 1.3 t_2^{-0.1}$$

GRB 190114C: Light Curves

H. Zhang et al. (2020), MNRAS 974, 2020

GRB 180720B: EC Model

EC dominance:

Energy density of external photons greater than magnetic field!!

$$u_{\rm ex} \ge 4n(R)m_p c^2 \epsilon_B$$

 $T_{90} \sim 49 {\rm s}$

H.E.S.S. Detection

(0.1 -0.5 TeV)

~10 hr onwards

GRB 180720B: Light Curves

Late VHE afterglow can be explained by the EC component in this GRB.

GRB 190829A: SSC Model

 $T_{90} \sim 6 \mathrm{s}$

H.E.S.S. Detection (0.2 - 4 TeV)

~4.3 hr onwards

E _k (Erg)	Γ	р	E e	ε _B	A*
2 x 10 ⁵²	42	2.1	0.1	0.1	0.1

GRB 190829A: SSC Model

GRB 221009A: BOAT

 $T_{90} \sim 327 {\rm s}$

LHAASO: > 64000 photons [0.2- > 10 TeV]

E _k (Erg)	1.5 x 10 ⁵⁵	10 ⁵⁵
Γο	560	260
р	2.2	2.42
E e	0.025	0.02
Е В	6x10 ⁻⁴	10-6
n _o	0.4	A* = 1
Expected Neutrino		0.33

GRB 221009A: BOAT

t[s]

LHAASO Collaboration (2023), Science 380, 6652 Kai Wang et al. (Arxiv 2310.11821)

Insights on the Cosmic Rays and Neutrino's from GRBs

GRB Relativistic Jets: Properties

Standard and Low Luminosity (LL)-GRBs

Luminosity $< 10^{52}$ erg 36

Motivations: Choked vs LLGRBs

Chocked GRBs:

Isotropic Fermi gamma-ray background suggest that IC neutrino sources might be hidden in gamma-rays!!

LLGRBs: Larger Rates!!

Neutrino Flux: Choked vs LLGRBs

Chocked GRBs

 $L_{\rm iso} \ [{\rm erg/s}] = 10^{46} - 10^{50}, \ln(\bar{\Gamma}) = 1.1, \ \sigma = 0.1,$

- VHE emission in GRBs is consistent with the SSC and EC models.
- Thomson and Klien Nishina IC regimes can be investigated in details.
- In special cases: GRB 190829A or GRB 221009A hadronic models are also included.
- The jet composition: Mixed type (electrons and CR protons), but need to understand their fractions.

Thank you for your attention

X-ray Light Curves: VHE GRBs

Data is taken from SWIFT-XRT Database. https://www.swift.ac.uk/analysis/xrt/ Currently GRB TeV Catalogue has appended 5 sources. http://tevcat.uchicago.edu/

External Shocks: Synchrotron Emission

Sari, Piran & Narayan (1998), ApJL 497, 17 Zhang & Meszaros (2001), ApJ 559,110 Piran & Nakar (2010) ApJL 718, 63

Jet Composition and Radiation Channels

1-70 GeV PL Component

- Required BLF ~ 1000,
- Could be signature of Jet-composition.

HE Emission: GRB 090510

- A short GRB, z=0.903,
- Lepto-hadronic model for MW emission,
- >100 MeV: p-sync,
- X-rays and UV: e_sync

E _k	2 x 10 ⁵⁵ erg
Го	2400
ε _e	0.0001
ε _ρ	0.5
ε	0.3
n	3 cm ³
R	10 ¹⁷ cm

HE Emission: GRB 090510

SSC model for MW emission,

E _k	9 x 10 ⁵¹ erg
Го	1500
ε _e	0.2
ε	0.02
n	10 ⁻⁵ cm ³
R	5 x 10 ¹⁶ cm

GRB 190829A: ISM Medium

E _k (Erg)	4.5 x 10 ⁵⁴
Го	400
р	2.4
ε _e	0.05
ε	1.2e-5
n (cm³)	0.035

GRB: Prompt Phase

• The radiation during the prompt phase moslty due to thermal or non-thermal radiation.

- A long GRB, z~[0.382, 3.512]
- Thermal Emission Component

E _{g,iso} (erg)	10 ⁵⁴
Го	1000
R	10 ¹² cm

S. Iyyani et al. (2013), MNRAS 433, 2739

Prompt Phase and Fe Nuclei

- A long GRB, z=0.34,
- 73 GeV photon at T_0 +19s,
- 95 GeV photon at T₀+244s,
- Brightest X-ray light curve,
- Fe loaded Jets.

E _{g,iso} (erg)	10 ⁵⁴
Γ0	1000
В	130 kG
R	10 ¹³ cm
E _{Fe, iso}	10 ⁵³ erg

J. C. Joshi, S. Razzaque & R. Moharana (2016), MNRASL, 458, L79

GRB: Prompt Phase

• The radiation during the prompt phase moslty due to thermal or non-thermal radiation.

- A long GRB, z~[0.382, 3.512]
- Thermal Emission Component

E _{g,iso} (erg)	10 ⁵⁴
Го	1000
R	10 ¹² cm

S. Iyyani et al. (2013), MNRAS 433, 2739

Synchrotron-self Compton

• We assume a continuous injection of electrons:

$$Q(\gamma) = Q_0 \times \begin{cases} 0; & \gamma < \gamma_m \\ \left(\frac{\gamma}{\gamma_m}\right)^{-p}; & \gamma > \gamma_m \end{cases}$$

Synchrotron-self Compton

The continuity equation of the electron distribution:

$$\boxed{\frac{\partial N(\gamma)}{\partial t} + \frac{\partial}{\partial \gamma} [\dot{\gamma}(\gamma)N(\gamma)] = Q(\gamma)}$$
Fast Cooling:

$$N(\gamma) \propto \begin{cases} \gamma^{-2}; & \gamma_c < \gamma < \gamma_m \\ \gamma^{-(p+1)}; & \gamma > \gamma_m \end{cases}$$
Slow Cooling:

$$N(\gamma) \propto \begin{cases} \gamma^{-p}; & \gamma_m < \gamma < \gamma_c \\ \gamma^{-(p+1)}; & \gamma > \gamma_c \end{cases}$$

$$N(\gamma) \propto \begin{cases} \gamma^{-p}; & \gamma_m < \gamma < \gamma_c \\ \gamma^{-(p+1)}; & \gamma > \gamma_c \end{cases}$$