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Dark Matter(DM)

What we know about DM ?

X Non-luminous and non-baryonic.

X ∼ 24% of our Universe made of DM.

X Massive and interact gravitationally.

X Stable on cosmological time scale.

SM fails to accomodate DM.

Thermal DM : WIMP

<σv> = 2×10-8 GeV-2
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DM becomes relic.
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Multi-component DM

•Why multicomponent DM ?

Null results at direct, indirect and collider searches ⇒ the DM
sector still remains unknown including the possibility of having
more than one particle.

The visible sector : ∼ 4% of the universe.
− many fundamental particles (fermions, gauge bosons and Higgs )
− with different interactions (strong, weak and EM).

Too simple to assume only one kind of DM with one specific
interaction to contribute ∼ 26% energy density of the universe.

• Features of multicomponent DM

Relic: ΩDMh
2 = Ω1h

2 + Ω2h
2 + ... = 0.120± 0.001 (PLANCK)

DM Conversion: DM1+ DM1 → DM2+ DM2 ⇒ leads to modified
freezeout → Opens up over-abundance region of DM1.

DD cross-section supressed as: σDD
eff (i) =

(
Ωi/ΩDM

)
σ{i−n}.

larger allowed parameter space .. ( SB, PG.., JHEP 03 (2020) 090 )
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Two component DM Example scenario: scalar singlet φ + inert doublet Φ

Single Comp. DM: scalar singlet φ and inert Φ =

(
H+ H0+iA0

√
2

)T

Two Comp. DM: DM1(φ)+ DM1(φ) → DM2(Φ)+ DM2(Φ)
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How one can distinguish the signature of
Two component DM at collider ??

We demonstrate that in ILC, there is an advantage over LHC due to
beam polarization and longitudinal degrees of freedom.

Ref: JHEP12(2022)049 (arXiv: 2202.12097)
Subhaditya Bhattacharya, P Ghosh, Jayita Lahiri and Biswarup

Mukhopadhyaya
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OSDL+ME @ ILC e− e+ → X + `+`−

• Dark sector with SU(2)L multiplet: {X0(mDM), X±(mDM + ∆m), .}

• Signal: `+`− + 0j+ ME @ ILC

e− e+ → X+ X−; (X− → `− ν` X
0), (X+ → `+ ν` X

0) (with ` = e, µ)

• The peak of the ME distribution depends on both mDM and ∆m :
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The peak of the distribution shifts to the right with an increase in
splitting (∆m) for a fixed mass mDM.

Increasing mass (mDM) doesn’t shift the peak position; it shifts
the distribution endpoint.
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Two Component DM: OSDL+ME @ ILC e− e+ → ME + `+`−

• Two component DM with:

DM1: {X0
1 (mDM1), X±1 (mDM1 + ∆m1) } : X−1 → `− ν` X

0
1

DM2: {X0
2 (mDM2), X±2 (mDM2 + ∆m2) } : X−2 → `− ν` X

0
2

Both having identical collider signal: `+`− + 0j+ ME.

e− e+ → X+ X−; (X− → `− ν` X
0), (X+ → `+ ν` X

0) (with ` = e, µ)

where NLSPs : X± : {X±1 , X
±
2 } (1)

Two DMs : X0 : {X0
1 , X

0
2}

(2)

• Two component DM with mDM1 6= mDM2 and ∆m1 6= ∆m2
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A Toy Model A Two Component DM Model

A Model with two component DM: G = SM⊗(Z2 ⊗Z ′2)

Scalar DM (φ0): Inert doublet Φ =
(
φ+ φ0+iA0

√
2

)T
; Φ

Z2−→ −Φ;

with mφ0 < mφ± < mA0 .

Fermion DM (ψ0): Lepton doublet Ψ =
(
ψ ψ−

)T
+ Lepton

Singlet χR ; (Ψ, χ)
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with mψ0 < mψ± < mψ2 < mψ3 .
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Signal+Background Distribution Polarization+Lepton Energy cut

• Beam Polarization (ME Distributions): JHEP12(2022)049
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Signal+Background Distribution Gaussian Fitting

The separation of the peaks depends on
∆m; while height depnd on production
crosssection.
Two peak Gaussian Fitting :

yH = G(t) = A1e
− (t−µ1)2

2σ2
1 + A2e

− (t−µ2)2

2σ2
2 + B

χ2(µ1, σ1;µ2, σ2) =
∑n
i=1

(
G(µ1,σ1;µ2,σ2)[tiH ]−yiH

)2

yi
H
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Signal+Background Distribution Conditions for segregating the peaks

• How can one define the prominence of the second (smaller) peak
relative to the first (larger) peak? JHEP12(2022)049

• How to resolve best separation between the two peaks?

• Conditions for segregating the peaks

C1 : ∆N1 =

∫ t1
t

ydt, ∆N2 =

∫ t′
t1

ydt

RC1 =
|∆N2 −∆N1|
√

∆N1

> 2.

C2 : RC2 =
y(t
′′

)− y′(t
′′

)√
y′(t′′ )

> 2.

C4 : RC4 =
y(t2)− y(tmin)√

y(tmin)
> 2.

C1 : ∆N1 =

∫ t1
t

ydt, ∆N2 =

∫ t′
t1

ydt RC1 =
|∆N2 −∆N1|
√

∆N1

> 2.

C2 : RC2 =
y(t
′′

)− y′(t
′′

)√
y′(t′′ )

> 2.

C3 : RC3 =

∫ t1+∆t
t1−∆t ydt−

∫ t2+∆t
t2−∆t ydt∫ t1+∆t

t1−∆t ydt +
∫ t2+∆t
t2−∆t ydt

C4 : RC4 =
y(t2)− y(tmin)√

y(tmin)
> 2.
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Two component DM at LHC

Can we observe two peak distribution at LHC ?
Signal: `−`+ + 0j +X

Two peaks can be observed in the signal.

The signal encounter a huge QCD background.

Work in Progress ..............
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Summary

• The key variables that play a role in producing distinguishable peaks
are

both of the DM masses (mDM1,mDM2); their mass-splitting with
the corresponding HDSPs (∆m1,∆m2); and their production
cross-sections (σX+

1 X
−
1

, σX+
2 X
−
2

).

• Conditions C1−4 (RC1−4 > 2σ) can successfully distinguish double
peak behaviour in the ME spectrum.

• High luminosity and High energy avoid statistical fluctuations and
meets peak separation conditions.

Ref: JHEP12(2022)049(arXiv:2202.12097) pghoshiitg@gmail.com
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Backup Slides The Model

The minimal renormalizable Lagrangian for this model then reads,

L ⊃ LSDM + LFDM. (3)

The Lagrangian for the SDM sector, having inert scalar doublet Φ can
be written as :

LSDM =
∣∣∣(∂µ − ig2

σa

2
W aµ − ig1

Y

2
Bµ
)

Φ
∣∣∣2 − V (Φ, H) ;

V (Φ, H) = µ2
Φ(Φ†Φ) + λΦ(Φ†Φ)2 + λ1(H†H)(Φ†Φ) + λ2(H†Φ)(Φ†H)

+
λ3

2
[(H†Φ)2 + h.c.] .

The minimal renormalizable Lagrangian for FDM having one
vector-like doublet (Ψ) and one right-handed singlet (χR) reads:

LFDM = ΨL(R) [iγµ(∂µ − ig2
σa

2
W a
µ − ig1

Y ′

2
Bµ)] ΨL(R) + χR (iγµ∂µ) χR

− mψΨΨ−
(1

2
mχχR(χR)c + h.c

)
− Y√

2

(
ΨL H̃χR + ΨR H̃χR

c + h.c
)

;(4)

where ΨL(R) = PL(R)Ψ; PL/R = 1
2(1∓ γ5).
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Backup Slides Relic+DD+ID Constraints
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Backup Slides BPs
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