Multi-Component Dark Matter: Identifying at Collider

Purusottam Ghosh

IACS Kolkata

ICHEPAP 2023 @ SINP (11-15 December 2023)

[Dark Matter\(DM\)](#page-1-0)

What we know about DM ?

- \checkmark Non-luminous and non-baryonic.
- \checkmark ~ 24% of our Universe made of DM.
- $\sqrt{\ }$ Massive and interact gravitationally.
- \checkmark Stable on cosmological time scale. SM fails to accomodate DM.

Thermal DM : WIMP

- Kinetic Eqlbm. $(T_{DM} = T_{SM})$ $DM SM \leftrightarrow DM SM$
- Chemical Eqlbm. $(n_{DM}^{eq.} = n_{SM}^{eq.})$ DM $DM \leftrightarrow SM SM$

when $\Gamma << H$: DM DM \rightarrow SM SM DM becomes relic.

• Why multicomponent DM ?

- Why multicomponent DM ?
	- Null results at direct, indirect and collider searches \Rightarrow the DM sector still remains unknown including the possibility of having more than one particle.
- Why multicomponent DM ?
	- Null results at direct, indirect and collider searches ⇒ the DM sector still remains unknown including the possibility of having more than one particle.
	- The visible sector : \sim 4% of the universe.
		- − many fundamental particles (fermions, gauge bosons and Higgs)
		- − with different interactions (strong, weak and EM).
- Why multicomponent DM?
	- Null results at direct, indirect and collider searches ⇒ the DM sector still remains unknown including the possibility of having more than one particle.
	- The visible sector : \sim 4% of the universe.
		- − many fundamental particles (fermions, gauge bosons and Higgs)
		- − with different interactions (strong, weak and EM).
	- Too simple to assume only one kind of DM with one specific interaction to contribute $\sim 26\%$ energy density of the universe.
- Why multicomponent DM?
	- Null results at direct, indirect and collider searches ⇒ the DM sector still remains unknown including the possibility of having more than one particle.
	- The visible sector : \sim 4% of the universe.
		- − many fundamental particles (fermions, gauge bosons and Higgs)
		- − with different interactions (strong, weak and EM).
	- Too simple to assume only one kind of DM with one specific interaction to contribute $\sim 26\%$ energy density of the universe.
- Features of multicomponent DM
- Why multicomponent DM?
	- Null results at direct, indirect and collider searches ⇒ the DM sector still remains unknown including the possibility of having more than one particle.
	- The visible sector : \sim 4% of the universe.
		- − many fundamental particles (fermions, gauge bosons and Higgs)
		- − with different interactions (strong, weak and EM).
	- Too simple to assume only one kind of DM with one specific interaction to contribute $\sim 26\%$ energy density of the universe.
- Features of multicomponent DM
	- Relic: $\Omega_{\text{DM}} h^2 = \Omega_1 h^2 + \Omega_2 h^2 + ... = 0.120 \pm 0.001$ (PLANCK)
- Why multicomponent DM?
	- Null results at direct, indirect and collider searches ⇒ the DM sector still remains unknown including the possibility of having more than one particle.
	- The visible sector : \sim 4% of the universe.
		- − many fundamental particles (fermions, gauge bosons and Higgs)
		- − with different interactions (strong, weak and EM).
	- Too simple to assume only one kind of DM with one specific interaction to contribute $\sim 26\%$ energy density of the universe.
- Features of multicomponent DM
	- Relic: $\Omega_{\text{DM}} h^2 = \Omega_1 h^2 + \Omega_2 h^2 + ... = 0.120 \pm 0.001$ (PLANCK)
	- DM Conversion: DM1+ DM1 \rightarrow DM2+ DM2 \Rightarrow leads to modified freezeout \rightarrow Opens up over-abundance region of DM1.
- Why multicomponent DM?
	- Null results at direct, indirect and collider searches ⇒ the DM sector still remains unknown including the possibility of having more than one particle.
	- The visible sector : \sim 4% of the universe.
		- − many fundamental particles (fermions, gauge bosons and Higgs)
		- − with different interactions (strong, weak and EM).
	- Too simple to assume only one kind of DM with one specific interaction to contribute $\sim 26\%$ energy density of the universe.
- Features of multicomponent DM
	- Relic: $\Omega_{\text{DM}} h^2 = \Omega_1 h^2 + \Omega_2 h^2 + ... = 0.120 \pm 0.001$ (PLANCK)
	- DM Conversion: DM1+ DM1 \rightarrow DM2+ DM2 \Rightarrow leads to modified freezeout \rightarrow Opens up over-abundance region of DM1.
	- DD cross-section supressed as: $\sigma_{\text{eff}}^{\text{DD}}(i) = (\Omega_i/\Omega_{\text{DM}})\sigma_{\{i-n\}}.$
- Why multicomponent DM?
	- Null results at direct, indirect and collider searches ⇒ the DM sector still remains unknown including the possibility of having more than one particle.
	- The visible sector : \sim 4% of the universe.
		- − many fundamental particles (fermions, gauge bosons and Higgs)
		- − with different interactions (strong, weak and EM).
	- Too simple to assume only one kind of DM with one specific interaction to contribute $\sim 26\%$ energy density of the universe.
- Features of multicomponent DM
	- Relic: $\Omega_{\text{DM}} h^2 = \Omega_1 h^2 + \Omega_2 h^2 + ... = 0.120 \pm 0.001$ (PLANCK)
	- DM Conversion: DM1+ DM1 \rightarrow DM2+ DM2 \Rightarrow leads to modified freezeout \rightarrow Opens up over-abundance region of DM1.
	- DD cross-section supressed as: $\sigma_{\text{eff}}^{\text{DD}}(i) = (\Omega_i/\Omega_{\text{DM}})\sigma_{\{i-n\}}.$
	- larger allowed parameter space \ldots (sB, PG.., JHEP 03 (2020) 090)

Single Comp. DM: scalar singlet ϕ and inert $\Phi = \left(H^+ - \frac{H^0 + iA^0}{\sqrt{2}}\right)^T$

Single Comp. DM: scalar singlet ϕ and inert $\Phi = (H^+)$ H^+ $\frac{H^0 + iA^0}{\sqrt{2}}$ 2 \setminus^T

Single Comp. DM: scalar singlet ϕ and inert $\Phi = \left(\mu + \frac{1}{2}\right)$ H^+ $\frac{H^0 + iA^0}{\sqrt{2}}$

Two Comp. DM: $DM1(\phi) + DM1(\phi) \rightarrow DM2(\Phi) + DM2(\Phi)$

Single Comp. DM: scalar singlet ϕ and inert $\Phi = (H^+)$ H^+ $\frac{H^0 + iA^0}{\sqrt{2}}$ 2 \setminus^T

Two Comp. DM: $DM1(\phi) + DM1(\phi) \rightarrow DM2(\Phi) + DM2(\Phi)$

How one can distinguish the signature of Two component DM at collider ??

How one can distinguish the signature of Two component DM at collider ??

We demonstrate that in ILC, there is an advantage over LHC due to beam polarization and longitudinal degrees of freedom.

How one can distinguish the signature of Two component DM at collider ??

We demonstrate that in ILC, there is an advantage over LHC due to beam polarization and longitudinal degrees of freedom.

Ref: JHEP12(2022)049 (arXiv: 2202.12097) Subhaditya Bhattacharya, P Ghosh, Jayita Lahiri and Biswarup Mukhopadhyaya

[OSDL+ME @ ILC](#page-18-0) $e^- e^+ \rightarrow X + \ell^+ \ell^-$

• Dark sector with $SU(2)_L$ multiplet: $\{X^0(m_{\text{DM}}), X^{\pm}(m_{\text{DM}} + \Delta m), \ldots\}$

 $e^- e^+ \to X^+ X^-; (X^- \to \ell^- \ \overline{\nu_\ell} \ X^0), (X^+ \to \ell^+ \ \nu_\ell \ X^0)$ (with $\ell = e, \mu$)

 $e^- e^+ \to X^+ X^-; (X^- \to \ell^- \ \overline{\nu_\ell} \ X^0), (X^+ \to \ell^+ \ \nu_\ell \ X^0)$ (with $\ell = e, \mu$)

$$
e^- e^+ \rightarrow X^+ X^-
$$
; $(X^- \rightarrow \ell^- \overline{\nu_{\ell}} X^0)$, $(X^+ \rightarrow \ell^+ \nu_{\ell} X^0)$ (with $\ell = e, \mu$)

[OSDL+ME @ ILC](#page-18-0) $e^- e^+ \rightarrow X + \ell^+ \ell^-$

• Dark sector with $SU(2)_L$ multiplet: $\{X^0(m_{\text{DM}}), X^{\pm}(m_{\text{DM}} + \Delta m), \ldots\}$ • Signal: $\ell^+\ell^- + 0j+$ ME @ ILC

 $e^- e^+ \to X^+ X^-; (X^- \to \ell^- \ \overline{\nu_\ell} \ X^0), (X^+ \to \ell^+ \ \nu_\ell \ X^0)$ (with $\ell = e, \mu$)

 $e^- e^+ \to X^+ X^-; (X^- \to \ell^- \ \overline{\nu_\ell} \ X^0), (X^+ \to \ell^+ \ \nu_\ell \ X^0)$ (with $\ell = e, \mu$)

- The peak of the distribution shifts to the right with an increase in splitting (Δm) for a fixed mass m_{DM} .
- Increasing mass (m_{DM}) doesn't shift the peak position; it shifts the distribution endpoint.

- • Two component DM with:
	- DM1: $\{X_1^0(m_{\text{DM1}}), X_1^{\pm}(m_{\text{DM1}} + \Delta m_1)\} : X_1^- \to \ell^- \overline{\nu_{\ell}} X_1^0$
	- DM2: $\{X_2^0(m_{\text{DM2}}), X_2^{\pm}(m_{\text{DM2}} + \Delta m_2)\} : X_2^- \to \ell^- \overline{\nu_{\ell}} X_2^0$
	- Both having identical collider signal: $\ell^+ \ell^- + 0j + \text{ME}$.

$$
e^- e^+ \to X^+ X^-; (X^- \to \ell^- \overline{\nu_\ell} X^0), (X^+ \to \ell^+ \nu_\ell X^0) \text{ (with } \ell = e, \mu)
$$

where NLSPs: $X^{\pm} : \{X_1^{\pm}, X_2^{\pm}\}$
Two DMs: $X^0 : \{X_1^0, X_2^0\}$

- Two component DM with:
	- DM1: $\{X_1^0(m_{\text{DM1}}), X_1^{\pm}(m_{\text{DM1}} + \Delta m_1)\} : X_1^- \to \ell^- \overline{\nu_{\ell}} X_1^0$
	- DM2: $\{X_2^0(m_{\text{DM2}}), X_2^{\pm}(m_{\text{DM2}} + \Delta m_2)\} : X_2^- \to \ell^- \overline{\nu_{\ell}} X_2^0$
	- Both having identical collider signal: $\ell^+ \ell^- + 0j + \text{ME}$.

$$
e^- e^+ \to X^+ X^-; (X^- \to \ell^- \overline{\nu_\ell} X^0), (X^+ \to \ell^+ \nu_\ell X^0) \text{ (with } \ell = e, \mu)
$$

where NLSPs: $X^{\pm} : \{X_1^{\pm}, X_2^{\pm}\}$
Two DMs: $X^0 : \{X_1^0, X_2^0\}$

- Two component DM with:
	- DM1: $\{X_1^0(m_{\text{DM1}}), X_1^{\pm}(m_{\text{DM1}} + \Delta m_1)\} : X_1^- \to \ell^- \overline{\nu_{\ell}} X_1^0$
	- DM2: $\{X_2^0(m_{\text{DM2}}), X_2^{\pm}(m_{\text{DM2}} + \Delta m_2)\} : X_2^- \to \ell^- \overline{\nu_{\ell}} X_2^0$
	- Both having identical collider signal: $\ell^+ \ell^- + 0j + \text{ME}$.

$$
e^- e^+ \to X^+ X^-; (X^- \to \ell^- \overline{\nu_\ell} X^0), (X^+ \to \ell^+ \nu_\ell X^0) \text{ (with } \ell = e, \mu)
$$

where NLSPs: $X^{\pm} : \{X_1^{\pm}, X_2^{\pm}\}$
Two DMs: $X^0 : \{X_1^0, X_2^0\}$

- Two component DM with:
	- DM1: $\{X_1^0(m_{\text{DM1}}), X_1^{\pm}(m_{\text{DM1}} + \Delta m_1)\} : X_1^- \to \ell^- \overline{\nu_{\ell}} X_1^0$
	- DM2: $\{X_2^0(m_{\text{DM2}}), X_2^{\pm}(m_{\text{DM2}} + \Delta m_2)\} : X_2^- \to \ell^- \overline{\nu_{\ell}} X_2^0$
	- Both having identical collider signal: $\ell^+ \ell^- + 0j + \text{ME}$.

$$
e^- e^+ \to X^+ X^-; (X^- \to \ell^- \overline{\nu_\ell} X^0), (X^+ \to \ell^+ \nu_\ell X^0) \text{ (with } \ell = e, \mu)
$$

where NLSPs: $X^{\pm} : \{X_1^{\pm}, X_2^{\pm}\}$
Two DMs: $X^0 : \{X_1^0, X_2^0\}$

- Two component DM with:
	- DM1: $\{X_1^0(m_{\text{DM1}}), X_1^{\pm}(m_{\text{DM1}} + \Delta m_1)\} : X_1^- \to \ell^- \overline{\nu_{\ell}} X_1^0$
	- DM2: $\{X_2^0(m_{\text{DM2}}), X_2^{\pm}(m_{\text{DM2}} + \Delta m_2)\} : X_2^- \to \ell^- \overline{\nu_{\ell}} X_2^0$
	- Both having identical collider signal: $\ell^+ \ell^- + 0j + \text{ME}$.

$$
e^- e^+ \to X^+ X^-; (X^- \to \ell^- \overline{\nu_\ell} X^0), (X^+ \to \ell^+ \nu_\ell X^0) \text{ (with } \ell = e, \mu)
$$

where NLSPs: $X^{\pm} : \{X_1^{\pm}, X_2^{\pm}\}$
Two DMs: $X^0 : \{X_1^0, X_2^0\}$

$$
\mathcal{G} = \mathrm{SM} {\otimes} (\mathcal{Z}_2 \otimes \mathcal{Z}_2')
$$

 $'_{2})$

Scalar DM (ϕ^0): Inert doublet $\Phi = \begin{pmatrix} \phi^+ & \frac{\phi^0 + iA^0}{\sqrt{2}} \end{pmatrix}$ $\big)^T$; $\Phi \stackrel{\mathcal{Z}_2}{\longrightarrow} -\Phi;$ with $m_{\phi^0} < m_{\phi^{\pm}} < m_{A^0}$.

Scalar DM (ϕ^0): Inert doublet $\Phi = \begin{pmatrix} \phi^+ & \frac{\phi^0 + iA^0}{\sqrt{2}} \end{pmatrix}$ $\big)^T$; $\Phi \stackrel{\mathcal{Z}_2}{\longrightarrow} -\Phi;$ with $m_{\phi^0} < m_{\phi^{\pm}} < m_{A^0}$.

Fermion DM (ψ^0): Lepton doublet $\Psi = (\psi \quad \psi^-)^T +$ Lepton Singlet χ_R ; $(\Psi, \chi) \stackrel{\mathcal{Z}'_2}{\longrightarrow} (-\Psi, -\chi);$ with $m_{\psi^0} < m_{\psi^\pm} < m_{\psi_2} < m_{\psi_3}$.

 $'_{2})$

A Model with two component DM: $'_{2})$ **Scalar DM** (ϕ^0): Inert doublet $\Phi = \begin{pmatrix} \phi^+ & \frac{\phi^0 + iA^0}{\sqrt{2}} \end{pmatrix}$ $\big)^T$; $\Phi \stackrel{\mathcal{Z}_2}{\longrightarrow} -\Phi;$ with $m_{\phi^0} < m_{\phi^{\pm}} < m_{A^0}$. **Fermion DM** (ψ^0): Lepton doublet $\Psi = (\psi \quad \psi^-)^T +$ Lepton Singlet χ_R ; $(\Psi, \chi) \stackrel{\mathcal{Z}'_2}{\longrightarrow} (-\Psi, -\chi);$ with $m_{\psi^0} < m_{\psi^\pm} < m_{\psi_2} < m_{\psi_3}$.

Signal and Background: $\ell^+\ell^- + 0j+$ ME

Scalar DM (ϕ^0): Inert doublet $\Phi = \begin{pmatrix} \phi^+ & \frac{\phi^0 + iA^0}{\sqrt{2}} \end{pmatrix}$ $\big)^T$; $\Phi \stackrel{\mathcal{Z}_2}{\longrightarrow} -\Phi;$ with $m_{\phi^0} < m_{\phi^{\pm}} < m_{A^0}$.

Fermion DM (ψ^0): Lepton doublet $\Psi = (\psi \quad \psi^-)^T +$ Lepton Z'_{\circ}

$$
\begin{array}{ll}\text{Singlet } \chi_R \; ; & (\Psi, \chi) \xrightarrow{\mathcal{L}_2} (-\Psi, -\chi);\\ \text{with } m_{\psi^0} < m_{\psi^\pm} < m_{\psi_2} < m_{\psi_3} \end{array}
$$

Signal and Background: $\ell^+\ell^- + 0j+$ ME

 $'_{2})$

.

A Model with two component DM: $\mathcal{G} = \text{SM} \otimes (\mathcal{Z}_2 \otimes \mathcal{Z}'_2)$

Scalar DM (ϕ^0): Inert doublet $\Phi = \begin{pmatrix} \phi^+ & \frac{\phi^0 + iA^0}{\sqrt{2}} \end{pmatrix}$ $\big)^T$; $\Phi \stackrel{\mathcal{Z}_2}{\longrightarrow} -\Phi;$ with $m_{\phi^0} < m_{\phi^{\pm}} < m_{A^0}$.

Fermion DM (ψ^0): Lepton doublet $\Psi = (\psi \quad \psi^-)^T +$ Lepton Z_0'

$$
\begin{array}{ll}\text{Singlet } \chi_R \; ; & (\Psi, \chi) \xrightarrow{\mathcal{L}_2} (-\Psi, -\chi);\\ \text{with } m_{\psi^0} < m_{\psi^\pm} < m_{\psi_2} < m_{\psi_3} \end{array}
$$

Signal and Background: $\ell^+\ell^- + 0j+$ ME

Subhaditya Bhattacharya, PG, Jayita Lahiri, Biswarup Mukhopadhyaya JHEP12(2022)049

.

 $P1: (P(e^-), P(e^+)): (-0.8, 0.3)$ $P2: (P(e^-), P(e^+)): (+0.8, -0.3)$

$$
P1:\big(P(e^-),P(e^+)\big):(-0.8,0.3)
$$

 $P2: (P(e^-), P(e^+)): (+0.8, -0.3)$

• Lepton Energy Cut (Leading lepton energy distributions):

$$
P1: (P(e^-), P(e^+)): (-0.8, 0.3)
$$

 $P2: (P(e^-), P(e^+)): (+0.8, -0.3)$

• Lepton Energy Cut (Leading lepton energy distributions):

$$
P1: (P(e^-), P(e^+)): (-0.8, 0.3)
$$

 $P2: (P(e^-), P(e^+)): (+0.8, -0.3)$

• Lepton Energy Cut (Leading lepton energy distributions):

- The separation of the peaks depends on Δm ; while height depnd on production crosssection.
- Two peak Gaussian Fitting :

$$
\begin{split} y_H&=G(t)=A_1e^{-\frac{(t-\mu_1)^2}{2\sigma_1^2}}+A_2e^{-\frac{(t-\mu_2)^2}{2\sigma_2^2}}+B\\ \chi^2(\mu_1,\sigma_1;\mu_2,\sigma_2)&=\sum_{i=1}^n\frac{\left(G(\mu_1,\sigma_1;\mu_2,\sigma_2)[t_H^i]-y_H^i\right)^2}{y_H^i}. \end{split}
$$

 $S/B = 3$ $S = 11\sigma$

- The separation of the peaks depends on Δm ; while height depnd on production crosssection.
- Two peak Gaussian Fitting :

$$
y_H = G(t) = A_1 e^{-\frac{(t-\mu_1)^2}{2\sigma_1^2}} + A_2 e^{-\frac{(t-\mu_2)^2}{2\sigma_2^2}} + B
$$

$$
\chi^2(\mu_1, \sigma_1; \mu_2, \sigma_2) = \sum_{i=1}^n \frac{\left(G(\mu_1, \sigma_1; \mu_2, \sigma_2)[t_H^i] - y_H^i\right)^2}{y_H^i}.
$$

 $S/B = 3$ $S = 11\sigma$

- The separation of the peaks depends on Δm ; while height depnd on production crosssection.
- Two peak Gaussian Fitting :

$$
y_H = G(t) = A_1 e^{-\frac{(t-\mu_1)^2}{2\sigma_1^2}} + A_2 e^{-\frac{(t-\mu_2)^2}{2\sigma_2^2}} + B
$$

$$
\chi^2(\mu_1, \sigma_1; \mu_2, \sigma_2) = \sum_{i=1}^n \frac{\left(G(\mu_1, \sigma_1; \mu_2, \sigma_2)[t_H^i] - y_H^i\right)^2}{y_H^i}.
$$

 $S/B = 3$ $S = 11\sigma$

- • How can one define the prominence of the second (smaller) peak relative to the first (larger) peak? JHEP12(2022)049
- How to resolve best separation between the two peaks?
- How can one define the prominence of the second (smaller) peak relative to the first (larger) peak? JHEP12(2022)049
- How to resolve best separation between the two peaks?

• Conditions for segregating the peaks

C1:
$$
\Delta N_1 = \int_t^{t_1} y dt, \quad \Delta N_2 = \int_{t_1}^{t'} y dt
$$

$$
R_{C1} = \frac{|\Delta N_2 - \Delta N_1|}{\sqrt{\Delta N_1}} > 2.
$$

$$
R_{C2} = \frac{y(t'') - y'(t'')}{\sqrt{y'(t'')}} > 2.
$$

C4:
$$
R_{C4} = \frac{y(t_2) - y(t_{\min})}{\sqrt{y(t_{\min})}} > 2.
$$

Purusottam Ghosh [IACS](#page-0-0) December 15, 2023 11 / 16

Can we observe two peak distribution at LHC ? Signal: $\ell^- \ell^+ + 0j + X$

- Two peaks can be observed in the signal.
- The signal encounter a huge QCD background.

Work in Progress

- • The key variables that play a role in producing distinguishable peaks are
	- \bullet both of the DM masses (m_{DM1}, m_{DM2}) ; their mass-splitting with the corresponding HDSPs (Δm_1 , Δm_2); and their production cross-sections $(\sigma_{X_1^+ X_1^-}, \, \sigma_{X_2^+ X_2^-})$.

- The key variables that play a role in producing distinguishable peaks are
	- both of the DM masses (m_{DM1}, m_{DM2}) ; their mass-splitting with the corresponding HDSPs $(\Delta m_1, \Delta m_2)$; and their production cross-sections $(\sigma_{X_1^+ X_1^-}, \, \sigma_{X_2^+ X_2^-})$.
- Conditions C_{1-4} ($R_{C_{1-4}} > 2\sigma$) can successfully distinguish double peak behaviour in the ME spectrum.

- The key variables that play a role in producing distinguishable peaks are
	- \bullet both of the DM masses (m_{DM1}, m_{DM2}) ; their mass-splitting with the corresponding HDSPs $(\Delta m_1, \Delta m_2)$; and their production cross-sections $(\sigma_{X_1^+ X_1^-}, \, \sigma_{X_2^+ X_2^-})$.
- Conditions C_{1-4} ($R_{C_{1-4}} > 2\sigma$) can successfully distinguish double peak behaviour in the ME spectrum.
- High luminosity and High energy avoid statistical fluctuations and meets peak separation conditions.

- The key variables that play a role in producing distinguishable peaks are
	- both of the DM masses (m_{DM1}, m_{DM2}) ; their mass-splitting with the corresponding HDSPs (Δm_1 , Δm_2); and their production cross-sections $(\sigma_{X_1^+ X_1^-}, \, \sigma_{X_2^+ X_2^-})$.
- Conditions C_{1-4} ($R_{C_{1-4}} > 2\sigma$) can successfully distinguish double peak behaviour in the ME spectrum.
- High luminosity and High energy avoid statistical fluctuations and meets peak separation conditions.

Ref: $JHEP12(2022)049(\text{arXiv}:2202.12097)$ pghoshiitg@gmail.com

The minimal renormalizable Lagrangian for this model then reads,

$$
\mathcal{L} \supset \mathcal{L}^{\text{SDM}} + \mathcal{L}^{\text{FDM}}.\tag{3}
$$

The Lagrangian for the SDM sector, having inert scalar doublet Φ can be written as :

$$
\mathcal{L}^{\text{SDM}} = \left| \left(\partial^{\mu} - ig_2 \frac{\sigma^a}{2} W^{a\mu} - ig_1 \frac{Y}{2} B^{\mu} \right) \Phi \right|^2 - V(\Phi, H);
$$

$$
V(\Phi, H) = \mu_{\Phi}^2 (\Phi^{\dagger} \Phi) + \lambda_{\Phi} (\Phi^{\dagger} \Phi)^2 + \lambda_1 (H^{\dagger} H) (\Phi^{\dagger} \Phi) + \lambda_2 (H^{\dagger} \Phi) (\Phi^{\dagger} H) + \frac{\lambda_3}{2} [(H^{\dagger} \Phi)^2 + h.c.]
$$

The minimal renormalizable Lagrangian for FDM having one vector-like doublet (Ψ) and one right-handed singlet (χ_R) reads:

$$
\mathcal{L}^{\text{FDM}} = \overline{\Psi}_{L(R)} \left[i \gamma^{\mu} (\partial_{\mu} - i g_2 \frac{\sigma^a}{2} W_{\mu}^a - i g_1 \frac{Y'}{2} B_{\mu}) \right] \Psi_{L(R)} + \overline{\chi}_{R} \left(i \gamma^{\mu} \partial_{\mu} \right) \chi_{R} - m_{\psi} \overline{\Psi} \Psi - \left(\frac{1}{2} m_{\chi} \overline{\chi}_{R} (\chi_{R})^c + h.c \right) - \frac{Y}{\sqrt{2}} \left(\overline{\Psi}_{L} \widetilde{H} \chi_{R} + \overline{\Psi}_{R} \widetilde{H} \chi_{R}^c \right)
$$

where $\Psi_{L(R)} = P_{L(R)} \Psi; P_{L/R} = \frac{1}{2}$ $\frac{1}{2}(1 \mp \gamma_5).$

BPs	SDM sector $\{m_{\alpha 0}, \Delta m_1, \lambda_L\}$	FDM sector ${m_{\psi_1}, \Delta m_2, \sin\theta}$	Ω_{A} ²	$\Omega_{ab}h^2$	$\sigma_{\geq 0}^{\text{eff}}$ (cm ²)	$\sigma_{\rm abs}^{\rm eff}$ (cm ²)	$BR(H_{inv})\%$
BP1	100, 10, 0.01	60.5, 370, 0.022	0.00221	0.1195	3.45×10^{-46}	2.03×10^{-47}	0.25
BP ₂	100, 10, 0.01	58.91, 285, 0.032	0.00221	0.10962	3.45×10^{-46}	5.38×10^{-47}	1.60
BP3	100, 10, 0.01	58.87, 176, 0.04	0.00221	0.11941	3.45×10^{-46}	5.00×10^{-47}	1.50
BP4	100, 10, 0.01	58.48, 190, 0.042	0.00221	0.1114	3.45×10^{-46}	7.01×10^{-47}	2.4

Table 2. Benchmark points of the model; contribution to relic density, spin-independent direct detection cross-section as well as that of invisible Higgs decay branching ratios of the DM components ϕ^0 and ψ_1 are mentioned.

Benchmarks		Collider cross-section (fb)									
		$\sigma_{\text{total}}(\text{OSD})$			$\sigma_{\phi^+\phi^-}$ (OSD)			$\sigma_{\psi^+\psi^-}$ (OSD)			
\sqrt{s}	Points	P1	P2	P3	P1	P ₂	P3	P1	P ₂	P ₃	
1000	BP1	232(10.8)	115(5.5)	58.5(2.75)	57.4(2.9)	28.9(1.5)	14.5(0.75)	173(8.4)	83.0(4.0)	44.0(2.0)	
	BP ₂	276(13.4)	141(6.6)	70.0(3.3)	57.4(2.9)	28.9(1.5)	14.5(0.75)	218(10.4)	111(5.3)	55.5(2.7)	
500	BP3	686(33.0)	339(15.9)	168.1(7.8)	180(8.9)	90.3(4.5)	44.3(2.3)	494(22.2)	253(11.3)	123.8(5.5)	
	BP4	345(16.7)	170(8.4)	83.5(3.9)	180(8.9)	90.3(4.5)	44.3(2.3)	171.4(7.4)	82.4(3.9)	39.2(1.9)	

Table 3. Signal cross-sections for HDSP pair production (OSD final state) at ILC. Total crosssection (σ_{total}), as well as individual contributions from SDM ($\sigma_{\phi+\phi-}$) and FDM ($\sigma_{\psi+\psi-}$) are mentioned. Three choices of beam polarisation are used: P1 \equiv {P_e-: -0.8, P_e+: +0.3}, P2 $\equiv \{P_{e^-}: 0, P_{e^+}: 0\}$ and $P3 \equiv \{P_{e^-}: +0.8, P_{e^+}: -0.3\}$. CM energy (\sqrt{s}) is in the units of GeV.

	Backgrounds	$Cross-section(fb)$			
/s	Processes	P1	P ₂	P ₃	
1 TeV	WW	296	128	18.3	
	ZZ	7.5	4.4	3.5	
	WW Z	1.2	0.5	0.08	
500 GeV	WW	802	342	51	
	ZZ	21	12	9.6	
	WW Z	0.8	0.37	0.06	

Table 4. Production cross-sections for $W^+(\ell^+\nu)W^-(\ell^-\bar{\nu})$, $Z(\ell^+\ell^-)Z(\nu\bar{\nu})$ and $W^+(\ell^+\nu)W^-(\ell^-\bar{\nu})Z(\nu\bar{\nu})$ background at $\sqrt{s} = 1$ TeV and 500 GeV for various polarization combinations P1, P2 and P3 (see caption of Table 3).