PRECISE PROBING AND DISCRIMINATION OF THIRD-GENERATION SCALAR LEPTOQUARKS

Anupam Ghosh, Partha Konar, Debashis Saha, and Satyajit Seth

PRL, Ahmedabad

Various Scalar Leptoquark Models

Models	$(SU(3)_c, SU(2)_L, U(1)_Y)$	Components & Decay
S_3	$(\bar{3},3,\frac{1}{3})$	$S_{3}^{\frac{4}{3}}(\tilde{b},\tau^{+}), S_{3}^{\frac{1}{3}}((\tilde{t},\tau^{+}),(\tilde{b},\tilde{\nu}_{\tau})), S_{3}^{-\frac{2}{3}}(\tilde{t},\tilde{\nu}_{\tau})$
R_2	$(3, 2, \frac{7}{6})$	$R_{2}^{\frac{5}{3}}(t,\tau^{+}), R_{2}^{\frac{2}{3}}((t,\tilde{\nu}_{\tau}),(b,\tau^{+}))$
\tilde{R}_2	$(3, 2, \frac{1}{6})$	$\tilde{R}_{2}^{\frac{2}{3}}((t,\tilde{N}_{\tau}),(b,\tau^{+})), \tilde{R}_{2}^{-\frac{1}{3}}((b,\tilde{\nu}_{\tau}),(b,\tilde{N}_{\tau}))$
\tilde{S}_1	$(\bar{3}, 1, \frac{4}{3})$	$ ilde{S}_1^{rac{4}{3}}(ilde{b}, au^+)$
S_1	$(\bar{3}, 1, \frac{1}{3})$	$S_1^{\frac{1}{3}}((\tilde{t},\tau^+),(\tilde{b},\tilde{\nu}_{\tau}),(\tilde{b},\tilde{N}_{\tau}))$
\bar{S}_1	$(\bar{3}, 1, -\frac{2}{3})$	$\bar{S}^{-rac{2}{3}}(\tilde{t},\tilde{N}_{ au})$

The SM fermions:

$$Q_L \equiv (3, 2, \frac{1}{6}), \ L_L \equiv (1, 2, -\frac{1}{2}) \ u_R \equiv (3, 1, \frac{2}{3}), \ d_R \equiv (3, 1, -\frac{1}{3}), \ e_R \equiv (1, 1, -1)$$

NLO+PS Effects

Signal and Backgrounds with cuts

For LHC search, we choose two fat jets plus missing energy as the signature.

C	7 . :	XXZ Linker	$+\mathbf{X}\mathbf{X}\mathbf{Z}$ + \mathbf{z}	

Production and Decay at LHC

	Cuta	D3	102			u + j Cus		
	Cuts	(fb)	(fb)	(fb)	(fb)	(fb)	(fb)	(fb)
	C1	0.2315	0.232	2517.99	1366.91	690.65	366.91	5073.4
	U1	[100%]	[100%]	[100%]	[100%]	[100%]	[100%]	[100%]
	\mathbb{C}_{2}	0.2258	0.2262	1640.29	762.59	302.16	152.52	2934.4
	CZ	[97.54%]	[97.5%]	[65.14%]	[55.79%]	[43.75%]	[41.57%]	[57.84%]
	C_{3}	0.1810	0.1801	241.73	117.99	230.94	114.39	720.2
		[78.19%]	[77.63%]	[9.60%]	[8.63%]	[33.44%]	[31.18%]	[14.20%]
	C4(MVA)	0.1047	0.1033	25.38	17.33	64.23	27.45	136.16
		[45.23%]	[44.53%]	[1.01%]	[1.27%]	[9.30%]	[7.48%]	[2.68%]

C1: Preselection cuts C2: $\not\!\!\!E_T > 150 \text{ GeV}$

C3: at least one b-tag within J_0 or J_1 , C4: $M_{J_0}, M_{J_1} > 120 \text{ GeV}$

Polarization variables

Angular variable in the top/antitop rest frame $\frac{1}{\Gamma}\frac{d\Gamma}{d\cos\theta_{i}} = \frac{1}{2}(1 + P_{t} k_{i} \cos\theta_{i}) \left| \frac{1}{\overline{\Gamma}}\frac{d\overline{\Gamma}}{d\cos\overline{\theta_{i}}} = \frac{1}{2}(1 + \overline{P}_{t} \overline{k_{i}} \cos\overline{\theta_{i}}) \right|$ Energy variable in the Lab frame $z = \frac{E_{b}}{E_{t}}$

$$\frac{1}{\Gamma}\frac{d\Gamma}{dz} = \frac{1}{\beta_t}\frac{m_t^2}{m_t^2 - m_W^2} \left(1 - P_t \ k_b \frac{1}{\beta_t} + P_t \ k_b \frac{1}{\beta_t}\frac{2m_t^2}{m_t^2 - m_W^2}z\right)$$

Daughters	b	W^+		$k \cdot = -\overline{k}$ -	$\cos\theta_{\rm b} = \frac{1}{2} \left(-\frac{1}{2} \right)$	$\frac{2m_t^2}{2m_t^2}$	-1)
k_i	-0.41	+0.41)	$n_l - n_l$,	$\beta_{\rm t} \langle {\rm m} \rangle$	$m_t^2 - m_W^2$	-)
		b			b		

Kinematic Distributions

In our analysis, with 140 fb^{-1} lumi-

nosity, 2σ exclusion limit on the mass

For 1300 GeV mass, around 1700

 fb^{-1} required for 5σ discovery.

is 1270 GeV.

LHC Reach and Model Discrimination

Distributions of Pol. Variables

$$\mathcal{L}(\mathbf{E}|\mathbf{O}) = \prod_{i=1}^{n} e^{-E_i} E_i^{O_i} / \Gamma(O_i + 1) \qquad Z_{M1|M2} = \sqrt{-2ln \frac{\mathcal{L}(\mathbf{M}1|\mathbf{M}2)}{\mathcal{L}(\mathbf{M}2|\mathbf{M}2)}}$$

C	predicted	observed	Rejection Prob. (Z)	Rejection Prob. (Z)
L			(14 TeV)	(27 TeV)
2ab-1	$R_2 + B$	$S_3 + B$	0.98σ	6.45σ
500	$S_3 + B$	$R_2 + B$	1.01 σ	6.59σ