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Abstract

Machine learning algorithms have the capacity to discern intricate features

directly from raw data. We demonstrated the performance of top taggers

built upon three machine learning architectures: a BDT that uses jet-level

variables (high-level features, HLF) as input, while a CNN (miniature version

of ResNet) trained on the jet image, and a GNN (LorentzNet) trained on the

particle cloud representation of a jet utilizing the 4-momentum (low-level

features, LLF) of the jet constituents as input. We found significant perfor-

mance enhancement for all three classes of classifiers when trained on com-

bined data from calorimeter towers and tracker detectors. The high reso-

lution of the tracking data not only improved the classifier performance in

the high transverse momentum region, but the information about the dis-

tribution and composition of charged and neutral constituents of the fat jets

and subjets helped identify the quark/gluon origin of sub-jets and hence en-

hances top tagging efficiency. The LLF-based classifiers, such as CNN and

GNN, exhibit significantly better performance when compared to HLF-based

classifiers like BDT, especially in the high transverse momentum region. Nev-

ertheless, the LLF-based classifiers trained on constituents’ 4-momentum

data exhibit substantial dependency on the jet modeling within Monte Carlo

generators. The composite classifiers, formed by stacking a BDT on top of

a GNN/CNN, not only enhance the performance of LLF-based classifiers but

also mitigate the uncertainties stemming from the showering and hadroniza-

tion model of the event generator. We have conducted a comprehensive study

on the influence of the fat jet’s reconstruction and labeling procedure on the

efficiency of the classifiers.

Dataset

• Signal: Pair production of top quarks with both tops
decaying hadronically.

pp → t (→ bW +(→ qq ′)) t̄ (→ b̄W −(→ qq ′))

• Background: QCD Di-Jet events.

pp → j j

• The Fat-Jets are generated in 6 different transverse
momentum bins of 200 GeV covering the range 300
GeV to 1500 GeV

• Reconstructed top jets are matched with their par-
tonic counterparts by demanding all three top decay
products to lie within the cone of the fat jet. No such
matching is performed for the QCD jets.

• The variation of truth level tagging efficiency with re-
construction radius for top jets in different pT bins :
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ML - Algorithms

• BDTcalo : M, N-subjettiness, b-tag

• BDTtr ck : BDTcalo + additional track based variables.

• C N Ncalo : Single layered images based on calorime-
ter energy diposits.

• C N Ntr ck : Two layered images based on calorimeter
energy diposits + tracking information.

• GN Ncalo : Uses jet constituents originating from
Calorimeter.

• GN Ntr ck : Uses jet constituents originating from
Calorimeter + tracker.

• Composite Classifiers : Uses the score of a CNN/GNN
as input variable in a BDT.

• CNN : A 10-layered ResNet, GNN : LorentzNet

Effect of Tracking
Information

• The ROC curves of the different classifiers for top and QCD fat jets
in the pT range 550 GeV - 650 GeV :
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• We observe a almost 100% improvement in performance in going
from C N Ncalo →C N Ntr ck, GN Ncalo →GN Ntr ck.

• For BDTcalo the improvement is less as variables like M and N-
subjettiness already incorporate the tracking information.

• We observe a significant improvement in going from C N Ncalo →
CcaloBcalo, C N Ntr ck → Ctr ckBcalo, GN Ncalo → GcaloBcalo,
GN Ntr ck → Gtr ckBcalo because of the inclusion of additional
HLFs.

• CcaloBcalo →CcaloBtr ck and GcaloBcalo →GcaloBtr ck show additional
20-30 % improvement in performance due to the inclusion of track
based observables.

• Ctr ckBcalo → Ctr ckBtr ck and Gtr ckBcalo → Gtr ckBtr ck show no such
improvement as the tracking information are alredy present in Ctr ck

and Gtr ck.

Dependance on MC
generator

• The background rejection at 70% and 50% signal efficiency for
Pythia-generated (Herwig-generated) datasets :

Classifier 1/εc
B (εc

S = 0.7) 1/εc
B (εc

S = 0.5)

BDTcalo 119(105) 467(398)
C N Ncalo 70(57) 211(178)
GN Ncalo 139(106) 444(341)
BDTtr ck 175(159) 579(610)
C N Ntr ck 124(90) 423(299)
GN Ntr ck 311(214) 1322(789)
CcaloBcalo 176(175) 682(619)
CcaloBtr ck 208(204) 811(737)
Ctr ckBcalo 249(218) 1023(768)
Ctr ckBtr ck 257(221) 995(799)
GcaloBcalo 260(241) 969(842)
GcaloBtr ck 278(256) 1141(894)
Gtr ckBcalo 489(397) 1641(1604)
Gtr ckBtr ck 493(399) 1736(1666)

• Pythia and Herwig utilize different showering and hadronization
models, therefore classifiers like C N Ntr ck and GN Ntr ck that utilize
low level information like the four-momentum of jet constituents
for training depend strongly on the MC generator.

• However this dependence reduce significantly in composite classi-
fiers like Gtr ckBcalo and Gtr ckBtr ck with the inclusion of additional
high level features.

Effect of Reconstruction
Radius

• Jets with high pT are collimated, so a larger reconstruction radius
will pick large contribution from background events.

• At the same time jets with low pT require a larger radius for efficient
reconstruction.

• The ROC curves for GN ntr ck for fat-jets in the 55 GeV - 650 GeV pT

bin reconstructed using R=0.8 and R=1.2 anti-kT jets and matched
with(left) and without(right) their partonic counterparts.
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Variable 1/εc
B (εc

s = 50%) 1/εt ag
B (εt ag

s = 50%)

R = 0.8 1298 274
R = 1.2 711 424

• Clearly R=0.8 jets show better performance at the classifier level but
when used in an actual analysis the performance degrades due to
the prencence of a large fraction of fat-jets that are not proporly re-
constructed.

Final Results

• The ROC corves of the classifiers for the six pT bins considered in our analysis :
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• Note that the fat jets in the pT range [300, 500] GeV and [500, 700] GeV have different R-
parameters (R = 1.2) and hence different truth-level identification efficiency than those
in the remaining pT bins where fat jets are constructed with a RR of R = 0.8. Therefore,
comparing the classifier’s performances for fat jets belonging to these two groups is un-
suitable.

With Truth Level Tagging

• The Background rejection at 50% signal efficiency of the classifiers for the six pT bins con-
sidered in our analysis :

pT [GeV] BDTcalo BDTtr ck C N Ntr ck GN Ntr ck CT BC GT BC

300-500 388 456 159 587 762 1413
500-700 136 276 184 765 455 1178
700-900 168 345 278 845 538 1409
900-1100 79 247 256 971 466 1175
1100-1300 56 167 214 882 318 872
1300-1500 39 127 217 877 273 850

• The invariant mass of the QCD jets scales with pT and resembles more with that of the top
jets resulting in a gradual reductin in performance for BDTcalo and BDTtr ck.

• With C N Ntr ck we see a slight reduction in performance for the last four pT bins as the top
jet images gets more and more collimated with pT and resemble that of QCD jet images.

• For GN Ntr ck, we see comparable performance in the last few pT bins.

• In case of C N Ntr ck and GN Ntr ck, the [300, 500] GeV pT jets have a smaller 1/εc
B than the

[500, 700] GeV pT jets. This is because an R-parameter 1.2 is inefficient in capturing all the
constituents of the [300, 500] GeV fat jets and reduces the performance.

• C N Ntr ckBDT calo and GN Ntr ckBDTcalo show substancial improvement in performance
compared to C N Ntr ck and GN Ntr ck.However, this improvement gradually decreases with
increasing pT as the performance of the BDT decreases.

Without Truth Level Tagging

• The Background rejection at 50% signal efficiency of the classifiers for the six pT bins con-
sidered in our analysis (without truth level matching of the test sample):

pT [GeV] BDTcalo BDTtr ck C N Ntr ck GN Ntr ck CT BC GT BC

300-500 95 119 54 121 157 250
500-700 83 152 110 303 243 581
700-900 84 166 147 421 258 582
900-1100 57 148 168 534 279 789
1100-1300 45 124 157 540 234 651
1300-1500 34 101 167 609 217 662

• The performance falls substancially compared to the previous case and the fall in perfor-
mance is proportional to the truth level tagging efficiency.

Summary

• We found a significant increase in the classifier’s performance due to including the jet
constituents’ tracking data for charged constituents in the training and testing process.

• This performance enhancement can be attributed to the fact that jets initiated by light
quarks or gluons exhibit distinct differences in the distribution and composition of
charged and neutral hadrons. Consequently, information about the charged and neutral
constituents of a jet in the form of tracking and tower data helps identify the quark/gluon
origin of sub-jets within a fat jet and hence enhances top tagging efficiency.

• It is important to note that despite their high performance, LLF-based classifiers like
GN Ntr ck have a significant drawback: they are heavily dependent on the jet modeling
provided by the Monte Carlo simulator, such as Pythia or Herwig, which introduces sub-
stantial systematic uncertainties.

• Strict reconstruction and identification criteria increase the purity of the sample, simulta-
neously decreasing truth level identification efficiency (εtr uth

S ). A classifier trained on such
pure samples is biased, and the performance cannot be efficiently generalized to new un-
seen data. We showed that properly selecting the reconstruction radius can improve the
εtr uth

S and help mitigate this issue.
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