International Conference on High Energy Particle & Astroparticle Physics (ICHEPAP2023)

Contribution ID: 89

Type: Poster

CMB signature of non-thermal Dark Matter

Tuesday, 12 December 2023 12:15 (1 hour)

Abstract-The basic idea of this work is to achieve the observed relic density of a non-thermal dark matter(DM) and its connection with Cosmic Microwave Background (CMB) via additional relativistic degrees of freedom which are simultaneously generated during the period TBBN to TCMB from a long-lived dark sector particle.. To realize this phenomena we minimally extend the type-I seesaw scenario with a Dirac fermion singlet(χ) and a complex scalar singlet (φ) which transform non-trivially under an unbroken symmetry $\boxtimes 3$. χ being the lightest particle in the dark sector acts as a stable dark matter candidate while the next to lightest state φ operates like a long lived dark scalar particle. The initial density of φ can be thermally produced through either self-interacting number changing processes ($3\varphi \rightarrow 2\varphi$) within dark sector or the standard annihilation to SM particles ($2\varphi \rightarrow 2$ SM). The late time (after neutrino decoupling) non-thermal decay of φ can produce dark matter in association with active neutrinos. The presence of extra relativistic neutrino degrees of freedom at the time of CMB can have a significant impact on Δ Neff. Thus the precise measurement of Δ Neff by current PLANCK 2018 collaboration and future experiments like SPT-3G and CMB-S4 can indirectly probe this non-thermal dark matter scenario which is otherwise completely secluded due to its tiny coupling with the standard model.

Presenter: JEESUN, SK (IACS, Kolkata) **Session Classification:** Poster Session 1