

Deep Learning Frontier in Theoretical High Energy Physics

Partha Konar Physical Research Laboratory Ahmedabad, India

> ICHEPAP2023 @ SINP Dac 12, 2023

Deep Learning Frontier in Theoretical High Energy Physics

Partha Konar Physical Research Laboratory Ahmedabad, India

Sanmay Ganguly -:

Application of Machine Learning Techniques in HEP experiments

Daniel Nieto Castano -:

Applications of Machine Learning in Astroparticle Physics

SEARCH AT LARGE HADRON COLLIDER (LHC)

RELEVANCE

- With around 40 mHz branch crossing LHC taking ~ 40 million snaps/s
- Each snapshot encounter large no of particles compounding ~10^8 sensors at different parts of detector
- ML takes role from low level reconstruction, identification, underlying event mitigation to high level identification, extraction, classification and anomaly detection
- Crucial roles in

 (i) Data reduction in real time triggers
 (ii) Anomaly detection
 (iii) Fast accurate reconstruction, identification with multi-sensor data
 (iv) Improvements in classification, regression, statistical analysis

Partha Konar, PRL

FOR HEP COMMUNITY

- Machine learning is not new for HEP community
- Used in low to high level experimental measurements with track finding, calorimeter hit reconstruction, particle identification, energy/momenta reco
- Multi Variate Analysis (MVA) & Boosted Decision Tree (BDT) used extensively on high level variables with primary focus as Classifier
 — Significant contribution in Higgs discovery
- I focus from the viewpoint of the emergence of modern deep learning era that greatly outperformed the previous state of arts in last one decade or so
- Driving forces -
 - Advent of graphics processor units (GPU) + Increased computing power
 - Large available data + Development of advanced ML architectures

Partha Konar, PRL

AND .. GOING DEEPER

- Classification: Find faint signal against a large background
- Move into higher dimensional space —

Multivariate analysis with High Level Variables

I Low Level Variables from detectors (number of dimensions very large)

Find the Division Boundary in this higher dimensional space

 Best possible [under-fitting?] but Trustworthy [over-fitting?] way

Neural Networks based on interconnected nodes in layered structure

- In analogy with brain neurones
- Connects different input/ derived data
- Involve free parameters (weight and bias) [inductive bias?]
- Optimise "free parameters" using labeled data [Model]

AND .. GOING DEEPER

- Universal function approximation: NN with a single hidden layer can approximate any continuous function to any desired precision!
- Deep learning models with multiple hidden layers solves the need for infinitely large no of nodes in shallow NN
- Learning scalable with data larger data for better performance
- Deep learning models are now capable of extracting feature directly from low level data
 - End for physics intuitive high level variables from domain experts?

ARTIFICIAL NEURAL NETWORK (ANN)

- Search for a function $f(\vec{x}, w) : X \to h_1 \dots \to h_i \to h_{i+1} \dots \to h_n \to Y$ X : Input/obs. space; Y: Target space [low-dimensional space]Optimize loss function $\mathscr{L}[y - f_w(x)];$ w - tunable parameters
- During training, trainable weight parameters (w) are learned by the back-propagation whose aim is to minimize the loss function.

ARTIFICIAL NEURAL NETWORK

Loss/Cost fn : $\mathscr{L}[y - f_w(x)]$ [Mean Squared Error, Cross-Entropy/logarithmic loss>] so that [gradient descent] $\nabla_w \mathscr{L}[y - f_w(x)] \to 0$

Partha Konar, PRL

CONVOLUTIONAL NEURAL NETWORK (CNN)

- Most significant innovation in DNN Image processing
- Convolution architecture rely on local and global features with translation invariance
- Inductive biases based on locality and weight sharing
- Image pixels are convoluted with no. of kernel/filter " k_j " $x_{i+1} = \sigma(wh + b) \rightarrow h_{i,j} = \sigma(k_j \cdot h_i + b_j)$
- Sharing same weights passing through full image
 reduce tunable parameters drastically
 translational symmetry on the network
- Algorithm first learn edges and shapes
 -> more complex local features
 -> leads to global features

Partha Konar, PRL

Deep Learning Frontier.. in Particle Physics

Kernel (or filter)

Feature map

CONVOLUTIONAL NEURAL NETWORK

WORKING PRINCIPLE AT LHC DATA

- Detectors calorimeter tower
 => pixels of an image
- Powerful image classification network proved to be extremely successful in jetsubstructure studies

Partha Konar, PRL

Deep Learning Frontier.. in Particle Physit Review :1806.11484, 2103.12336

DEEP MACHINE LEARNING

CATEGORY

Strategy –	—— Representations ——	— Targets / tagging —	strategies
Classification	 Jet Image Event Image Sequence (Recurrent NN) Graph (Graph NN) Sets (Point cloud - Graph) 	 Quarks vs gluons Boosted H / W / Z / Top tag New particles and models Particle tagging at detector Neutrino flavour 	 Weak/ Semi/ Un- supervised Reinforcement Learning Quantum Machine Learn Feature Ranking Optimal Transport
Regression	 Parameter estimation Pileup mitigation Parton Distribution Func Symbolic Regression Function Approximation 		
Generative models		 GANs Autoencoders Phase space generation Normalizing flows 	

Anomaly detection Partha Konar, PRL

Deep Learning Frontier.. in Particle Physics

HEP ML Living Reviews 12

REPRESENTATION OF DATA

- QCD Jets have a rich & complex structure perfect playing field
- How related to the first principles in Quantum Chromodynamics?
- No unique way for encoding radiation pattern into a particular data structure
- * Set of one-dimensional physically-motivated observables [e.g. Gallicchio, Schwartz 2011]
- Jets as images pixelated grayscale image. intensity ~ energy (or PT) of all particles that deposited energy in a particular location [e.g 1603.09349, 1407.5675]
- Include additional layers ('RGB') to encode more information such as charge-energy versus neutral-energy
- * jet clustering history as an image that mimics the QCD splitting function [Lund Jet Plane -2018]
- Constituents as a sequence clustering history as input [e.g. 1702.00748, 1711.02633]
- jet as a graph nodes and edges in point cloud : node property & connection strength between the various nodes of the graph. [Deep sets:1810.05165]

Partha Konar, PRL

JET REPRESENTATION

JET DATA - IMAGES, SEQUENCES AND SETS

Partha Konar, PRL

Deep Learning Frontier.. in Particle Physics

15

INFRA-RED AND COLLINEAR (IRC)

Any QCD jet observable should be

- sensitive to the physics you want to probe
- calculable from first principles in Quantum Chromodynamics (QCD)
- Kinoshita-Lee-Nauenberg (KLM) theorem: Divergences exactly cancel between the real and virtual contributions to the observable at each perturbative order when the soft and collinear regions of phase space are inclusively summed over.
- IRC safety ensures that the phase space restrictions that the measured value of an observable imposes do not disrupt this cancellation [Sterman and Weinberg]
- IRC safe Jet mass & thrust observable [early beginning of jet sub-structure]
- Catani etal (CTTW) large log resummed jet substructure observable
- * High-energy partons lead to collimated bunches of hadrons
- * jet definition: project from large no of hadrons => few parton-like objects
- Provide link between experimental observables and the theoretical construction
- Def of jet must be invariant with respect to certain modifications of the event
 - -> collinear splitting -> infrared emission
- * Effort went into constructing IRC safe jet : Sequential recombination in KT, Anti-KT Deep Learning Frontier.. in Particle Physics Partha Konar, PRL

INFRA-RED AND COLLINEAR (IRC)

SAFE OBSERVABLES

Set of hard jets in a event should remain unchanged — under a collinear splitting or addition of soft emission

For an observable \mathcal{O}_n defined on n particles.

$${\mathcal O}_{n+1}(p_a,.\,,p_b,{p_r},{p_s},p_c,.\,) o {\mathcal O}_n(p_a,.\,,p_b,{p_q},p_c,.\,)$$

In the infra-red $(z_r o 0 ext{ or } z_s o 0)$ or collinear limits $(\Delta_{rs} o 0)$

	$p_q = (z_q, \hat{p_q})$
For a splitting: $q ightarrow r+s$	$p_r = (z_r, \hat{p_r})$
$p_q=p_r+p_s$	$p_s = (z_s, \hat{p_s})$

Calculable in pQCD!!

How can we make neural networks aware of this physics input? So that, it treats all hadronic/jet analysis in a IRC safe way.

Partha Konar, PRL

CONVOLUTIONAL NEURAL NETWORK

Invisible Higgs search with CNN: Tower Image

Partha Konar, PRL

INVISIBLE HIGGS DECAY @ VECTOR-BOSON FUSION CONVOLUTIONAL NEURAL NETWORK

- ✓ Vector Boson Fusion (VBF) was a novel proposal for Higgs search
- Interesting topology for a VBF
 Two forward jets + large inv. Mass
 No central jet activity between them
 Decay products at the central region

- Qn. Can CNN learn feature for such event selection?
- Problem is even more difficult if Higgs is decaying invisibly No additional features from decay product!
- Let us try that!

Partha Konar, PRL

VBF is most sensitive
channel for invisible
Higgs searchCollider bounds on invisible
branching ratio of Higgs much
higher than SM prediction!!

Factor of three improvement using the same data!

¹ Hours of CNN training just extracted the relevant underlying feature better than our decades of research!

ROLE OF PARTON SHOWER

★In this simple setup with just two jets : NN minutely learned the kinematic relation & radiation pattern from the data

★Extra QCD radiation between two tag jets extremely significant!!

★Central-jet Veto:

Efficiently rejects large QCD backgrounds by vetoing events with additional central jet

★Qn. How faithful the distribution function which NN learn?

 Perturbative Accuracy of Matrix Element Simulation : LO vs NLO => Important for any process

Parton Shower recoil Scheme [Dipole parton shower]
 => Wrong global scheme (for spacelike shower) used in most analysis

★True potential unfolds if theoretical predictions are accurate enough.

Partha Konar, PRL

Images

Text

BEYOND CNN GRAPH NEURAL NETWORK Networks

- Detectors calorimeter hits are typically very sparse and unstructured
- Varying number of reconstructed constituents
- Large number of tunable parameters
- ✓ Euclidean image (CNN) => general non-Euclidean domain (GNN) : Geometric deep learning
- Graph: Event as point cloud with each entry containing a vector composed of observables
- Graph == Nodes (data point) + Edges (connections are as important as the data itself)
- Message passing operation: nodes features and edge features are exchanged and provide a sophisticated feature extraction
- GNN is very powerful recent concept mostly unexplored!!

POINT CLOUD

Set of points sampled from an underlying space (not necessarily Euclidean)

Each data sample is a set with variable cardinality:

$$\mathcal{S}_lpha = \{p_1, p_2, \dots, p_{n_lpha}\}$$

Can also be a collection of sets:

$$\mathcal{S}^{all}_{lpha} = \{\mathcal{S}^{jets}_{lpha}, \mathcal{S}^{leptons}_{lpha}, \mathcal{S}^{photon}_{lpha}, \dots\}$$

 α = Event index

CONSTRUCTION OF GRAPH LEARNING HOW DIFFERENT POINTS RELATE

Partha Konar, PRL

MESSAGE-PASSING OPERATIONS

1: Each node in the graph has associated (hidden states) feature vector.

A: Evaluate message (for each edge) by exchanging information between connected nodes
 B: [Sum of] all messages obtained from the neighbour update at each node : Update feature => Has information about the neighbourhoods

Can go to step A for successive run (l = 1,2,..L) local to global information 2: [Extract] all updated hidden states and create a final feature vector describing the whole graph. This feature vector can be then used as input to a standard machine learning model. NETWORK PERFORMANCE

EMPN - IRC SAFE WAY

PK, Vishal Ng, Michael Spannowsky; 2022

Partha Konar, PRL

UNIVERSAL APPROXIMATION OF IRC SAFE OBSERVABLES

 \star Any IRC safe observable \mathcal{O} can be expanded in a basis of C-correlators

$$\mathcal{O} \approx \sum_{N=0}^{N_{max}} C_N^{f_N} , \quad C_N^{f_N} = \sum_{i_1} \sum_{i_2} \dots \sum_{i_N} E_{i_1} E_{i_2} \dots E_{i_N} f_N(\hat{p}_{i_1}, \hat{p}_{i_2}, \dots \hat{p}_{i_N})$$

✓ Energy Flow Networks : Deep sets model which learns a per-particle map of each particle's directional coordinates $C_1 = \sum z_i g_1(\hat{\mathbf{p}}_i)$

Intersection A set of the set

- The IRC safe graph representation is obtained as $\mathbf{G}^{(L)} = \sum_{i=1}^{n_{part}} z_i \mathbf{h}_i^{(L)}$

- For a particular L, we can efficiently extract 2^L angular arguments

N

TOWARDS IRC SAFE H-EMPN HYPER - GRAPH NEURAL NETWORK

- Extracting features from any N-point correlation
- Construct IRC safe higher-point correlations
- Hypergraph Energy-weighted Message Passing Networks (H-EMPNs) designed to capture any N -point correlation among particles
- Order-three hyperedges simultaneously link properties of three jet constituents at a time
- Access higher-order correlations amongst jet constituents

Partha Konar, PRL

Deep Learning Frontier.. in Particle Physics

PK, Vishal Ng, Michael Spannowsky; 2023

Images

IRC SAFE EMPN GRAPH NEURAL NETWORK

- Generalised Energy Flow Networks (EFNs) to extract local correlations via message-passing operations
- Single Energy-weighted message passing improves upon EFNs
- Iterative application does not spoil IRC safety, performs better with reduced sensitivity to soft and collinear emissions
- ✓ Devised generic graph construction algorithms which give invariant graph structure in the <u>deletion</u> of a soft or collinear vertex
- Graph: embed general structure for intuitive physics input
- General enough to study inclusive event shapes
- Infra-red and collinear safe GNN mechanism is constructed for QCD jet study

CHALLENGES

Interpretability: Relevant physics knowledge learned by the model

- : Physics intuitive high-level features capture real insights, but clearly sacrifice some useful information
- Prejudice: Decades-old research by human mind must be supreme (After all, NN tried to mimic the neurones??)
- Status quo: are "we" and "journals" evolving slowly to catch up!
- In research: Dealing with different kinds of abstract data
- Overreach: Is not effective in all kinds of problems!

Involved cost:

- Data science skill development + domain knowledge expertise
- Order of magnitude higher computation power requirement
- Opaque transition between knowledge & learning

Partha Konar, PRL

