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RELEVANCE

With around 40 mHz branch crossing LHC taking ~ 40 million snaps/s

Each snapshot encounter large no of particles
compounding ~10/8 sensors at different parts of detector

ML takes role from low level reconstruction, identification, underlying
event mitigation to high level identification, extraction, classification
and anomaly detection

Crucial roles in

(i) Data reduction in real time - triggers

(ii) Anomaly detection

(iii) Fast accurate reconstruction, identification with multi-sensor data
(iv) Improvements in classification, regression, statistical analysis

Partha Konar, PRL CDecgo Leaming Frontier.. in Particle Tﬁysics
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FOR HEP COMMUNITY

Machine learning is not new for HEP community

Used in low to high level experimental measurements with track finding,
calorimeter hit reconstruction, particle identification, energy/momenta
reco

Multi Variate Analysis (MVA) & Boosted Decision Tree (BDT) used

extensively on high level variables with primary focus as Classifier
— Significant contribution in Higgs discovery

| focus from the viewpoint of the emergence of modern deep learning
era that greatly outperformed the previous state of arts in last one decade
or so

Driving forces -

— Advent of graphics processor units (GPU) + Increased computing power
— Large available data + Development of advanced ML architectures

Partha Konar, PRL CDecgo Leaming Frontier.. in Particle Tﬁysics




MACHINE LEARNING

AND .. GOING DEEPER

e Classification: Find faint signal against a large background

@ Move into higher dimensional space —
@ Multivariate analysis with High Level Variables
o | ow Level Variables from detectors (number of dimensions very large)

e Find the Division Boundary in this higher dimensional space
— Best possible [under-fitting?] but Trustworthy [over-fitting?] way

® Neural Networks based on interconnected nodes in layered structure
— In analogy with brain neurones

— Connects different input/ derived data

— Involve free parameters (weight and bias) [inductive bias?]
— Optimise “free parameters” using labeled data [Model]

Partha Konar, PRL Deep Leaming Frontier.. in Particle Tﬁysics
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AND .. GOING DEEPER

Universal function approximation: NN with a single hidden layer
can approximate any continuous function to any desired precision!

Deep learning models with multiple hidden layers solves the
need for infinitely large no of nodes in shallow NN

Learning scalable with data - larger data for better performance

Deep learning models are now capable of extracting feature

directly from low level data

— End for physics intuitive high level variables from domain experts?

Partha Konar, PRL CDeego Leaming Frontier.. in Particle Tﬁysics



(ANN)

o Search for a function f(x,w): X - hy~- > h, > h_,-- > h, > Y
X : Input/obs. space; Y: Target space [low- dimensional space]
Optimize loss function <[y —f (x)]; w - tunable parameters

e During training, trainable weight parameters (w) are learned by
the back-propagation whose aim is to minimize the loss function.

Input layer | Hidden layers i Output layer
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(ANN)
hi+1 — Z Wihi r bi —_— WTh

l Inputs

Weights

Activation/response: c(w'h) @ Netinput  Activation
funtion funtion

<Relu, sigmoid, tanh..>

Sigmoid ’ Leaky ReLU i
0(z) = s max(0.1z, x)

tanh Maxout
tanh(z) ’ max(w] z + by, w  + by)
RelLU ELU
max (0, z) {x ) z>0
= = a(e*—1) z<0 - - o

Loss/Cost fn : fZ[y —fw(x)] [Mean Squared Error, Cross-Entropy/logarithmic loss>]
so that [gradient descent] V ,ZL[y—f (x)] = 0

Partha Konar, PRL ‘.Deqp Leaming Frontier.. in Particle Tﬁysics
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Most significant innovation in DNN - Image processing

Convolution architecture rely on local and global features with
translation invariance

Inductive biases based on locality and weight sharing

Image pixels are convoluted with no. of kernel/filter “k;"

Sharing same weights passing through full image
=> reduce tunable parameters drastically

=> translational symmetry on the network TS
| w | x|
. . o
Algorithm first learn edges and shapes
-> more complex local features

-> |eads to global features
S ——

Partha Konar, PRL Deep Learning Frontier.. in Particle Tﬁysics 10




WORKING PRINCIPLE AT LHC DATA

o Detectors calorimeter tower B — i o
=> pixels of an image

===: ResNeXt Image CNN
==+ 2D Image CNN
== 1D Particle CNN
== Deep Network
A Hopkins Tagger (2008)
HEP Top Tagger (2014)

Powerful image classification
network proved to be
extremely successful in jet-
substructure studies %0 01 02 03 04 05 06 07
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DEEP MACHINE LEARNING
CATEGORY

Strategy Representations Targets / tagging Strategies

= Jet Image = Quarks vs gluons = Weak/ Semi/ Un-
= FEvent Image = Boosted H/W/Z/1op tag|| supervised

Classfication || = Segquence (Recurrent NN) || = New particles and models || = Reinforcement Learning
= Graph (Graph NN) = Particle tagging at detector ||= Quantum Machine Learn
= Sets (Point cloud - Graph) ||= Neutrino flavour = Feature Ranking

= Optimal Transport
=  Parameter estimation

= Pileup mitigation
Regression || = Parton Distribution Func
= Symbolic Regression
= Function Approximation
= (ANs
= Autoencoders
Generative models = Phase space generation
= Normalizing flows

Anomaly detection o :
C":*g;?'z ’K%lnat’, PRt Deep Learning Frontier.. in Particle ?ﬁysics HEP ML Living Reviews 1,



https://iml-wg.github.io/HEPML-LivingReview/
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REPRESENTATION OF DATA

o QCD Jets have a rich & complex structure - perfect playing field

o How related to the first principles in Quantum Chromodynamics?

@ No unique way for encoding radiation pattern into a particular data structure

* Set of one-dimensional physically-motivated observables [e.g. Gallicchio, Schwartz 2011]

+ Jets as images - pixelated grayscale image. intensity ~ energy (or PT) of all particles that
deposited energy in a particular location [e.g 1603.09349, 1407.5675]

+ Include additional layers (‘RGB’) to encode more information such as charge-energy
versus neutral-energy

o Constituents as a sequence - clustering history as input [e.g. 1702.00748, 1711.02633]

® jet as a graph - nodes and edges in point cloud : node property & connection strength
between the various nodes of the graph. [Deep sets:1810.05165 ]

Partha Konar, PRL Deep Leaming Frontier.. in Particle Tﬁysics




JET DATA - IMAGES, SEQUENCES AND SETS

Fixed

Partha Konar, PRL @eey Leaming Frontier.. in Particle Tﬁysics arX1v:1709.04464 15




INFRA-RED AND COLLINEAR (IRC)

Any QCD jet observable should be
— sensitive to the physics you want to probe
— calculable from first principles in Quantum Chromodynamics (QCD)

Kinoshita-Lee-Nauenberg (KLM) theorem: Divergences exactly cancel between the
real and virtual contributions to the observable at each perturbative order when
the soft and collinear regions of phase space are inclusively summed over.

IRC safety ensures that the phase space restrictions that the measured value of an
observable imposes do not disrupt this cancellation [Sterman and Weinberg]

IRC safe Jet mass & thrust observable [early beginning of jet sub-structure]

Catani etal (CTTW) large log resummed jet substructure observable

- High-energy partons lead to collimated bunches of hadrons

- jet definition: project from large no of hadrons => few parton-like objects

- Provide link between experimental observables and the theoretical construction
* Def of jet must be invariant with respect to certain modifications of the event
o -> collinear splitting  -> infrared emission

* Effort went into constructing IRC safe jet : Sequential recombination in KT, Anti-KT
Partha Konar, PRL Deep Learning Frontier.. in Particle Tﬁysics 16




INFRA-RED AND COLLINEAR (IRC)
SAFE OBSERVABLES

Set of hard jets in a event should remain uncﬁangec[
— under a collinear spfitting or addition of soﬁ emission

For an observable (’)n defined on n particles.

Ons+1(Pay -1 Pbs PryPsy Des - ) = On(Day -+ Py Py Pes -)

In the infra-red (2, — 0 or z; — 0) or collinear limits  (A,s — 0)
pq (zqaﬁQ) #
For a splitting: ¢ — 7 +s  p, = (z,,D,) Calculable in pQCD!!
Dg = Dr + Ds ps = (2s,Ds)

How can we make neural networks aware of this physics input?
So that, it treats all hadronic/jet analysis in a IRC safe way.

Partha Konar, PRL Deep Leaming Frontier.. in Particle Tﬁysics



INVISIBLE HIGGS DECAY @ VECTOR-BOSON FUSION
CONVOLUTIONAL NEURAL NETWORK

Invisible Higgs search with CNN: Tower Image

VBF Higgs signal — h Z(vo)+ Jets(from QCD vertex) f

—

Partha Konar, PRL Deep Learning Frontier.. in Particle Physics



INVISIBLE HIGGS DECAY @ VECTOR-BOSON FUSION
CONVOLUTIONAL NEURAL NETWORK

v Vector Boson Fusion (VBF) was a novel proposal for Higgs search

v Interesting topology for a VBF
Two forward jets + large inv. Mass
No central jet activity between them
Decay products at the central region

©® Qn. Can CNN learn feature for such event selection?

® Problem is even more difficult if Higgs is decaying invisibly — No
additional features from decay product!

VBF is most sensitive | Collider bounds on invisible
channel for invisible J branching ratio of Higgs much

Higgs search higher than SM prediction!!
Partha Konar, PRL @eego Leaming Frontier.. in Particle Tﬁysics
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INVISIBLE HIGGS DECAY @ VECTOR-BOSON FUSION

L=36fb 1 Median expected
+20 expected Three

Single-variable Multi-variate +10 expected High level data
analysis

Directly

| from Calorimeter
Reproduced pixel data

CMS analysis
result . Tower-Image

Q)I ;:
E 3
VU 3
=4

O |

f"j
=R’
— | f

MET > 200 GeV

Factor of three improvement using the same data!
" Howurs of CNN training just extracted the relevant underlying feature better than our decades of research!




INVISIBLE HIGGS DECAY @ VECTOR-BOSON FUSION
ROLE OF PARTON SHOWER

*In this simple setup with just two jets : NN minutely learned the kinematic
relation & radiation pattern from the data

Extra QCD radiation between two
tag jets extremely significant!!

*Central-jet Veto:
Efficiently rejects large QCD backgrounds by vetoing events with additional
central jet

*Qn. How faithful the distribution function which NN learn?

ePerturbative Accuracy of Matrix Element Simulation :
LO vs NLO => Important for any process

eParton Shower recoil Scheme [Dipole parton shower]
=> Wrong global scheme (for spacelike shower) used in most analysis

* True potential unfolds if theoretical predictions are accurate enough.

Partha Konar, PRL Deep Leaming Frontier.. in Particle Tﬁysics



INVISIBLE HIGGS DECAY @ VECTOR-BOSON FUSION
Receiver —all= OF PARTON SHOWER

Operator Characteristics (ROC)
Curve AUC

—— MGS5 LO Global

MG5 LO Dipole
---- POWHEG NLO Global
——- POWHEG NLO Dipole
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v NLO + Dipole parton shower scheme shows best performance

{ Rest two ( Dipole & NLO+ ) shows intermediate performan

Accurate description
{ Maming Frontier.. in Pdrticle ?ﬁysics
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BEYOND CNN

GRAPH NEURAL NETWORK

= Detectors calorimeter hits are typically very sparse and unstructured
= Varying number of reconstructed constituents
Large number of tunable parameters

Euclidean image (CNN) => general non-Euclidean domain (GNN) :
Geometric deep learning

Graph: Event as point cloud with each entry containing a vector
composed of observables

Graph == Nodes (data point) + Edges (connections are as important
as the data itself)

Message passing operation: nodes features and edge features are
exchanged and provide a sophisticated feature extraction

GNN is very powerful recent concept - mostly unexplored!!

Partha Konar, PRL Deep Leaming Frontier.. in Particle Tﬁysics




POINT CLOUD

Set of points sampled from an underlying
space (not necessarily Euclidean)

Each data sample is a set with variable cardinality:

— {p17p27"'°°°7pna}

Can also be a collection of sets:

Sall { S]ets Sleptons Sphoton, o }

Event index

Partha Konar, PRL Deep Leaming Frontier.. in Particle Tﬁysics




CONSTRUCTION OF GRAPH

LEARNING HOW DIFFERENT POINTS RELATE

Node features: {h,,h;,h.}

Edge features:{ep,, €cq,€ap,-- - }

Closed Neighbourhood sets for IRC safety:

Nla| > a

Partha Konar, PRL

N Edqe
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Neighbourhood sets:
N (a) = {b, c}
N (b) = {a,c}
N(c) ={c,a}




MESSAGE PASSING OPERATIONS

G(S,€) S = {a,b,c} . .
Message-passing operation
),(c,a),(a,b),
(A) Message-passing

(B) Node-readout
Graph-readout

® 0

@)

L iterations " Classification score

e O

S

1: Each node in the graph has associated (hidden states) feature vector.

A: Evaluate message (for each edge) by exchanging information between connected nodes

B: [Sum of] all messages obtained from the neighbour update at each node : Update feature
=> Has information about the neighbourhoods

Can go to step A for successive run (1 = 1,2,..L) local to global information

2: [Extract] all updated hidden states and create a final feature vector describing the whole

graph. This feature vector can be then used as input to a standard machine learning model.




NETWORK PERFORMANCE
EMPN - IRC SAFE WAY

:

L

01 02 03 0.4
Ro

PK, Vishal Ng, Michael Spannowsky; 2022
Partha Konar, PRL Deep Learning Frontier.. in Particle Tﬁysics 27




UNIVERSAL APPROXIMATION OF IRC SAFE OBSERVABLES

* Any IRC safe observable O can be expanded in a basis of C-correlators

N,

max

O ~ 2 C]]\[]’V ] CfN — e El-lEl-z o EiN fN(ﬁil’ﬁiz’ - °ﬁiN)
N=0 By Iy

v Energy Flow Networks : Deep sets model which learns a per-particle map of
each particle’s directional coordinates C; = Z z: £1(p,)

l

v Energy-weighted Message Passing Networks hg““) = Z Z; g(““)(hl(.“), hj(.“))

J

npart

- The IRC safe graph representation is obtained as G = Z Z; hl(.L)
=
= For a particular L, we can efficiently extract 2" angular arguments

Partha Konar, PRL Deep Leaming Frontier.. in Particle ?ﬁysics



TOWARDS IRC SAFE H-EMPN

HYPER - GRAPH NEURAL NETWORK

= Extracting features from any N-point correlation

= Construct IRC safe higher-point correlations

= Hypergraph Energy-weighted Message Passing Networks (H-EMPNs) -
designed to capture any N -point correlation among particles

= Order-three hyperedges simultaneously link properties of three jet
constituents at a time

= Access higher-order correlations amongst jet constituents

PK, Vishal Ng, Michael Spannowsky; 2023
Partha Konar, PRL Deep Learning Frontier.. in Particle Tﬁysics 29




IRC SAFE EMPN

GRAPH NEURAL NETWORK

= Generalised Energy Flow Networks (EFNs) to extract local
correlations via message-passing operations

= Single Energy-weighted message passing improves upon EFNs

= |terative application does not spoil IRC safety, performs better with
reduced sensitivity to soft and collinear emissions

v Devised generic graph construction algorithms which give invariant
graph structure in the deletion of a soft or collinear vertex

o Graph: embed general structure for intuitive physics input

© General enough to study inclusive event shapes

e Infra-red and collinear safe GNN mechanism is constructed for QCD
jet study

Partha Konar, PRL Deep Leaming Frontier.. in Particle Tﬁysics



MACHINE LEARNING

CHALLENGES

Interpretability: Relevant physics knowledge learned by the model
: Physics intuitive high-level features capture real insights,
but clearly sacrifice some useful information

Prejudice: Decades-old research by human mind must be supreme
(After all, NN tried to mimic the neurones??)

Status quo: are "we” and “journals” evolving slowly to catch up!

In research: Dealing with different kinds of abstract data

Overreach: Is not effective in all kinds of problems!

Involved cost:
— Data science skill development + domain knowledge expertise

— Order of magnitude higher computation power requirement
— Opaque transition between knowledge & learning

Partha Konar, PRL Deep Leaming Frontier.. in Particle Tﬁysics







