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SEARCH AT LARGE HADRON COLLIDER (LHC)

Partha Konar, PRL Deep Learning Frontier.. in Particle Physics 3



RELEVANCE

MACHINE LEARNING
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๏ With around 40 mHz branch crossing LHC taking ~ 40 million snaps/s


๏ Each snapshot encounter large no of particles  
compounding ~10^8 sensors at different parts of detector


๏ ML takes role from low level reconstruction, identification, underlying 
event mitigation to high level identification, extraction,  classification 
and anomaly detection


๏ Crucial roles in  
(i) Data reduction in real time - triggers  
(ii) Anomaly detection 
(iii) Fast accurate reconstruction, identification with multi-sensor data 
(iv) Improvements in classification, regression, statistical analysis



๏ Machine learning is not new for HEP community


๏ Used in low to high level experimental measurements with track finding, 
calorimeter hit reconstruction, particle identification, energy/momenta 
reco 


๏ Multi Variate Analysis (MVA) & Boosted Decision Tree (BDT) used 
extensively on high level variables with primary focus as Classifier 
— Significant contribution in Higgs discovery


๏ I focus from the viewpoint of the emergence of modern deep learning 
era that greatly outperformed the previous state of arts in last one decade 
or so


๏ Driving forces -  
— Advent of graphics processor units (GPU) + Increased computing power  
— Large available data + Development of advanced ML architectures
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MACHINE LEARNING
FOR HEP COMMUNITY



AND .. GOING DEEPER

MACHINE LEARNING

๏ Classification: Find faint signal against a large background

๏ Move into higher dimensional space — 

Multivariate analysis with High Level Variables

Low Level Variables from detectors (number of dimensions very large)

๏ Find the Division Boundary in this higher dimensional space  
 — Best possible [under-fitting?] but Trustworthy [over-fitting?] way 


๏ Neural Networks based on interconnected nodes in layered structure  
— In analogy with brain neurones 
— Connects different input/ derived data 
— Involve free parameters (weight and bias) [inductive bias?] 
— Optimise “free parameters” using labeled data [Model]
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AND .. GOING DEEPER

MACHINE LEARNING

๏ Universal function approximation: NN with a single hidden layer 
can approximate any continuous function to any desired precision!


๏ Deep learning models with multiple hidden layers solves the 
need for infinitely large no of nodes in shallow NN


๏ Learning scalable with data - larger data for better performance


๏ Deep learning models are now capable of extracting feature 
directly from low level data  
— End for physics intuitive high level variables from domain experts?
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(ANN)

ARTIFICIAL NEURAL NETWORK

๏ Search for a function   
 : Input/obs. space;   : Target space [low- dimensional space] 

Optimize loss function ;       w - tunable parameters 


๏ During training, trainable weight parameters (w) are learned by 
the back-propagation whose aim is to minimize the loss function. 
 

f( ⃗x, w) : X → h1⋯ → hi → hi+1⋯ → hn → Y
X Y

ℒ[y − fw(x)]
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hi+1 = ∑
i

wihi + bi = wTh
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Activation/response:  
 <ReLu, sigmoid, tanh..>

σ(wTh)

Loss/Cost fn :  [Mean Squared Error, Cross-Entropy/logarithmic loss>] 

so that [gradient descent] 
ℒ[y − fw(x)]

∇wℒ[y − fw(x)] → 0

ARTIFICIAL NEURAL NETWORK
(ANN)

 Introduce non-linearities 
+ converts output to Probabilities



CONVOLUTIONAL NEURAL NETWORK (CNN)
๏ Most significant innovation in DNN - Image processing


๏ Convolution architecture rely on local and global features with 
translation invariance 


๏ Inductive biases based on locality and weight sharing


๏ Image pixels are convoluted with no. of kernel/filter “ ” 
            


๏ Sharing same weights passing through full image 
=> reduce tunable parameters drastically 
=> translational symmetry on the network 


๏ Algorithm first learn edges and shapes 
-> more complex local features  
-> leads to global features

kj
xi+1 = σ(wh + b) → hi,j = σ(kj . hi + bj)
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WORKING PRINCIPLE AT LHC DATA

CONVOLUTIONAL NEURAL NETWORK

๏ Detectors calorimeter tower 
=> pixels of an image


๏ Powerful image classification 
network proved to be  
extremely successful in jet-
substructure studies
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CATEGORY

DEEP MACHINE LEARNING

Partha Konar, PRL Deep Learning Frontier.. in Particle Physics 12

Classification

➡ Jet Image
➡ Event Image
➡ Sequence (Recurrent NN)
➡ Graph (Graph NN)
➡ Sets (Point cloud - Graph)

Strategy    ———  Representations   —————   Targets / tagging   ———-——  strategies

➡ Quarks vs gluons
➡ Boosted H / W/ Z/ Top tag
➡ New particles and models
➡ Particle tagging at detector
➡ Neutrino flavour 

➡ Weak/ Semi/ Un-
supervised

➡ Reinforcement Learning
➡ Quantum Machine Learn 
➡ Feature Ranking 
➡ Optimal Transport

Regression

➡ Parameter estimation
➡ Pileup mitigation 
➡ Parton Distribution Func
➡ Symbolic Regression 
➡ Function Approximation

Anomaly detection

Generative models

➡ GANs
➡ Autoencoders 
➡ Phase space generation 
➡ Normalizing flows 

HEP ML Living Reviews

https://iml-wg.github.io/HEPML-LivingReview/


DONEC QUIS NUNC

HEP EVENTS  
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JETS



REPRESENTATION OF DATA
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๏ QCD Jets have a rich & complex structure - perfect playing field 


๏ How related to the first principles in Quantum Chromodynamics?


๏ No unique way for encoding radiation pattern into a particular data structure 


★ Set of one-dimensional physically-motivated observables [e.g. Gallicchio, Schwartz 2011]


✦ Jets as images - pixelated grayscale image. intensity ~ energy (or PT) of all particles that 
deposited energy in a particular location [e.g 1603.09349, 1407.5675]


✦ Include additional layers (‘RGB’) to encode more information such as charge-energy 
versus neutral-energy 


✴ jet clustering history as an image that mimics the QCD splitting function [Lund Jet Plane - 
2018]


๏ Constituents as a sequence - clustering history as input [e.g. 1702.00748, 1711.02633]


๏ jet as a graph - nodes and edges in point cloud : node property & connection strength 
between the various nodes of the graph. [Deep sets:1810.05165 ] 



JET REPRESENTATION
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JET DATA - IMAGES, SEQUENCES AND SETS 
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High-energy partons lead to collimated bunches of hadrons
jet definition: project from large no of hadrons => few parton-like objects 
Provide link between experimental observables and the theoretical construction 
Def of jet must be invariant with respect to certain modifications of the event 
        -> collinear splitting      ->  infrared emission 
Effort went into constructing IRC safe jet : Sequential recombination in KT, Anti-KT

INFRA-RED AND COLLINEAR (IRC)
Any QCD jet observable should be   
           — sensitive to the physics you want to probe

           — calculable from first principles in Quantum Chromodynamics (QCD) 

➡ Kinoshita-Lee-Nauenberg (KLM) theorem: Divergences exactly cancel between the 
real and virtual contributions to the observable at each perturbative order when 
the soft and collinear regions of phase space are inclusively summed over.


➡ IRC safety ensures that the phase space restrictions that the measured value of an 
observable imposes do not disrupt this cancellation [Sterman and Weinberg]


➡ IRC safe Jet mass & thrust observable [early beginning of jet sub-structure]

➡ Catani etal (CTTW) large log resummed jet substructure observable 
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How can we make neural networks aware of this physics input?
So that, it treats all hadronic/jet analysis in a IRC safe way.

SAFE OBSERVABLES

INFRA-RED AND COLLINEAR (IRC)

Set of hard jets in a event should remain unchanged  
                                 — under a collinear splitting or addition of soft emission



CONVOLUTIONAL NEURAL NETWORK

INVISIBLE HIGGS DECAY @ VECTOR-BOSON FUSION

Partha Konar, PRL Deep Learning Frontier.. in Particle Physics 18



CONVOLUTIONAL NEURAL NETWORK

INVISIBLE HIGGS DECAY @ VECTOR-BOSON FUSION

✓ Vector Boson Fusion (VBF) was a novel proposal for Higgs search


✓     Interesting topology for a VBF 
Two forward jets + large inv. Mass 
No central jet activity between them 
Decay products at the central region


๏ Qn. Can CNN learn feature for such event selection?


๏ Problem is even more difficult if Higgs is decaying invisibly — No 
additional features from decay product!


๏ Let us try that!
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Collider bounds on invisible 
branching ratio of Higgs much 

higher than SM prediction!!

VBF is most sensitive 
channel for invisible 

Higgs search
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3 SET OF ANALYSIS

INVISIBLE HIGGS DECAY @ VECTOR-BOSON FUSION
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Reproduced  
CMS analysis 

result

Three 
High level data 

analysis
Directly 

from Calorimeter 
pixel data

-Based on HL variables constructed by experts- —-Based on LL & HL input data——-

Factor of  three improvement using the same data!  
Hours of CNN training just extracted the relevant underlying feature better than our decades of research!
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★In this simple setup with just two jets : NN minutely learned the kinematic 
relation & radiation pattern from the data 


★Extra QCD radiation between two  
tag jets extremely significant!!


★Central-jet Veto:  
Efficiently rejects large QCD backgrounds by vetoing events with additional 
central jet 


★Qn. How faithful the distribution function which NN learn?


๏Perturbative Accuracy of Matrix Element Simulation :  
LO vs NLO => Important for any process 


๏Parton Shower recoil Scheme [Dipole parton shower] 
=> Wrong global scheme (for spacelike shower) used in most analysis 


★True potential unfolds if theoretical predictions are accurate enough.

ROLE OF PARTON SHOWER

INVISIBLE HIGGS DECAY @ VECTOR-BOSON FUSION
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ROLE OF PARTON SHOWER

INVISIBLE HIGGS DECAY @ VECTOR-BOSON FUSION

# Vishal Ng, PK  (2021)

Receiver 
Operator Characteristics (ROC) 

Curve AUC

✓ LO + Global parton shower scheme shows lowest performance


✓ NLO + Dipole parton shower scheme shows best performance


✓ Rest two (LO+ Dipole & NLO+ Global) shows intermediate performance
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Accurate description



GRAPH NEURAL NETWORK

BEYOND CNN

➡ Detectors calorimeter hits are typically very sparse and unstructured

➡ Varying number of reconstructed constituents

➡ Large number of tunable parameters

✓ Euclidean image (CNN) => general non-Euclidean domain (GNN) : 

Geometric deep learning

๏ Graph: Event as point cloud with each entry containing a vector 

composed of observables

๏ Graph == Nodes (data point) + Edges (connections are as important 

as the data itself)

๏ Message passing operation: nodes features and edge features are 

exchanged and provide a sophisticated feature extraction

๏ GNN is very powerful recent concept - mostly unexplored!!
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POINT CLOUD
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.



CONSTRUCTION OF GRAPH
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LEARNING HOW DIFFERENT POINTS RELATE

Node
Edge



MESSAGE-PASSING OPERATIONS
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.

1: Each node in the graph has associated (hidden states) feature vector.
A: Evaluate message (for each edge) by exchanging information between connected nodes
B: [Sum of] all messages obtained from the neighbour update at each node : Update feature 
                               => Has information about the neighbourhoods 
 Can go to step A for successive run (l = 1,2,..L) local to global information
2: [Extract] all updated hidden states and create a final feature vector describing the whole 
graph. This feature vector can be then used as input to a standard machine learning model.



NETWORK PERFORMANCE
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EMPN - IRC SAFE WAY

PK, Vishal Ng, Michael Spannowsky; 2022



UNIVERSAL APPROXIMATION OF IRC SAFE OBSERVABLES 


★ Any IRC safe observable  can be expanded in a basis of C-correlators  
 

 

 

✓ Energy Flow Networks : Deep sets model which learns a per-particle map of 
each particle’s directional coordinates  

✓ Energy-weighted Message Passing Networks 


➡ The IRC safe graph representation is obtained as 


➡ For a particular L, we can efficiently extract   angular arguments

𝒪

𝒪 ≈
Nmax

∑
N=0

CfN
N , CfN

N = ∑
i1

∑
i2

. . . ∑
iN

Ei1Ei2 . . . EiN fN( ̂pi1, ̂pi2, . . . ̂piN)

C1 = ∑
i

zi g1(p̂i)

h(α+1)
i = ∑

j

zj g(α+1)(h(α)
i , h(α)

j )

G(L) =
npart

∑
i=1

zi h(L)
i

2L
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HYPER - GRAPH NEURAL NETWORK

TOWARDS IRC SAFE H-EMPN

➡ Extracting features from any N-point correlation 

➡ Construct IRC safe higher-point correlations 

➡ Hypergraph Energy-weighted Message Passing Networks (H-EMPNs) - 

designed to capture any N -point correlation among particles 

➡ Order-three hyperedges simultaneously link properties of three jet 

constituents at a time 

➡ Access higher-order correlations amongst jet constituents 


➡
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GRAPH NEURAL NETWORK

IRC SAFE EMPN

➡ Generalised Energy Flow Networks (EFNs) to extract local 
correlations via message-passing operations


➡ Single Energy-weighted message passing improves upon EFNs

➡ Iterative application does not spoil IRC safety, performs better with 

reduced sensitivity to soft and collinear emissions

✓ Devised generic graph construction algorithms which give invariant 

graph structure in the deletion of a soft or collinear vertex

๏ Graph: embed general structure for intuitive physics input

๏ General enough to study inclusive event shapes

๏ Infra-red and collinear safe GNN mechanism is constructed for QCD 

jet study
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CHALLENGES
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๏ Interpretability: Relevant physics knowledge learned by the model 
: Physics intuitive high-level features capture real insights,  
                                  but clearly sacrifice some useful information 


๏ Prejudice: Decades-old research by human mind must be supreme  
                (After all, NN tried to mimic the neurones??)


๏ Status quo: are “we” and “journals” evolving slowly to catch up! 

๏ In research: Dealing with different kinds of abstract data

๏ Overreach: Is not effective in all kinds of problems! 

๏ Involved cost:   
— Data science skill development + domain knowledge expertise 
— Order of magnitude higher computation power requirement 
— Opaque transition between knowledge & learning 

MACHINE LEARNING




