Standard Model Physics at LHC

International Conference on High Energy Physics & Astroparticle Physics Dec 11-15, 2023, SINP, Kolkata

PROLAY MAL NATIONAL INSTITUTE OF SCIENCE EDUCATION & RESEARCH, BHUBANESWAR

Standard Model of Particle Physics

or VKV

K T

- ✓ Consists of all the known elementary particles till date (with masses ranging over 14 orders of magnitude!) encapsulating everything we know so far about the nature
- Remarkably successful in predicting phenomena involving wide range of cross-sections [10⁻³-10¹¹ pb] and withstood many detailed scrutiny over the past few decades of terrestrial experiments!
- Discovery of the Higgs boson in 2012 of course opened up the possibility for its property measurements; (so far) no deviations from the SM observed – see Vivek Sharma's presentation
- ✓ Yes, the SM is regarded an "effective theory"

Not predicted/answered by the SM

- Hierarchy problem new physics at TeV scale or extremely fine-tuned Higgs mass?
- Dark matter Universe has larger mass than visible! (see presentations by A. Roy & B. Gomber on collider searches)
- Many more puzzling questions
 - > Matter/antimatter asymmetry
 - Non-zero neutrino mass

The Large Hadron Collider (LHC)

One of the largest and the most complex scientific instrument ever conceived & built by humankind

Magnetic field at 7 TeV: 8.33 Tesla;
 operating temperature: 1.9 K

Magnets: ~9300 (1232 dipole,
 858 quadrupole, 6208 corrector)

➢ RF cavities: 8 per beam;
 field at top energy ≈ 5 MV/m

> Maximum number of bunches: 2808

> Peak luminosity: 2.5 x 10³⁴cm⁻²s⁻¹

> Collision frequency at 40 MHz

Power consumption: ~180 MW

The LHC

- Proton-proton (pp) collisions at Vs=7-8 TeV (2010-12, Run 1); Vs=13 TeV (2015-18, Run 2); presently
 - TeV (2015-18, Run 2); presently operational at Vs=13.6 TeV (Run 3 since 2022)
- ATLAS & CMS are the two general purpose particle physics experiments.

LHC Luminosity Accumulation

- Ongoing Run 3 started in 2022 at $\sqrt{s}=13.6$ TeV and LHC has been setting new record-breaking luminosity
- Exceedingly well performance by the LHC with delivered luminosities increasing rapidly
- Many precision measurements and rare processes studies have been plausible mostly due to the LHC performance "beyond the design goal".

ICHEPAP2023, SINP, Kolkata, Dec 11-15, 2023

* multi-purpose detectors with tracker, calorimeter and muon systems with hermatic coverage

- So the have undergone upgrades during the Long shutdown 1 (LS1) 1 and LS2 already
- ✤ Major detector upgrade (Phase 2) to follow for the High-Luminosity operations (HL-LHC)

Particle Detection/Identification (CMS)

ICHEPAP2023, SINP, Kolkata, Dec 11-15, 2023

The challenge @LHC

At the "standard" LHC luminosity: L=10³⁴ cm⁻²s⁻¹ = 10¹⁰ Hz/b $\sigma_{\text{inelastic}}(\text{pp}) \sim 70 \text{ mb}$ $\Rightarrow 7 \times 10^8 \text{ interactions}$

Bunch crossing frequency: 40MHz Storage rate ~ 1000 Hz

→ online rejection: > 99.99%
→ crucial impact on physics reach

Events discarded by the trigger system are lost forever

Recent QCD results

* α_s uncertainty is ~1%

JHEP 07 (2023) 85

PDG: $\alpha_s(m_z) = 0.1179 \pm 0.0009$

- Inclusive jets measurements to obtain/extract PDF and α_s simultaneously
- 13 TeV dataset with AK4/AK7 jets with pT>97 GeV and |y|<2.0
 Improved precision of the gluon at high x-values (NNL0)

Extracted $\alpha_{s}(m_{z}) = 0.1166 \pm 0.0017$

JHEP 02 (2022) 142

* α_s uncertainty is ~1%

JHEP 07 (2023) 85

PDG: $\alpha_s(m_z) = 0.1179 \pm 0.0009$

- Inclusive jets measurements to obtain/extract PDF and α_s simultaneously
- 13 TeV dataset with AK4/AK7 jets with pT>97 GeV and |y|<2.0
 Improved precision of the gluon at high x-values (NNL0)

ICHEPAP2023, SINP, Kolkata, Dec 11-15, 2023

Recent measurements with Vector bosons

Summary of W/Z cross-sections (5.02 & 13 TeV)

CMS-PAS-SMP-20-004 (Aug, 2023)

Precision measurement with the Vector Boson production at √s=5.02 TeV ans 13 TeV in agreement with NNLO pQCD calculations

□ All other experimental results are summarized as the function of center-of mass energy

- Precision measurement with the Vector Boson Scattering (VBS) processes are important for probing the Higgs sectors and hence understanding the electroweak symmetry-breaking
- Oppositely charged leptons with two jets (having high pseudorapidity gap) to target for the WW+2 jets events with the rejection for the QCD-induced processes and ttbar processes.
 - □ Full Run 2 dataset with event selection for two Isolated leptons (electron/muon) with p_T > 25 (13) GeV, and m_{II} >50 GeV and 2 jets along with the Missing Transverse Energy p^{mis}_T > 20 GeV
 - **At least two jets with pT>30 GeV**, $\Delta \eta_{ii}$ >2.5 and m_{ii} >300 GeV
 - □ Further event categorization based on final state lepton flavors

Observation of W⁺W⁻ VBS at the LHC

Signal enriched eµ region

PLB 841 (2023) 137495

Observed (expected) signal significance of 5.6\sigma (5.2\sigma)

- Data-driven background normalization using dedicated control regions for major backgrounds-- Top, DY
- Deep Neural Network training to identify signal events
- W+W- VBS fiducial cross-section measured through simultaneous fits of DNN and other discriminating observables:

 $\sigma_{fiducial} = 10.2 \pm 2.0 \text{ fb}$ $\sigma_{SM} = 9.1 \pm 0.6 \text{ fb}$

- Precision measurement with the Vector Boson Scattering (VBS) processes are important for probing the Higgs sectors and hence understanding the electroweak symmetry-breaking
- Event selection optimized for the Vector Boson Scattering (VBS) signal (Wγ+2 jets) with the rejection for the non-VBS electroweak (EWK) and QCD-induced processes
 - Isolated electron/muon p_T > 35 GeV, a photon (p_T > 25 GeV) and 2 jets along with the Missing Transverse Energy p^{mis}_T > 30 GeV
 - **Large pseudorapidity difference between the jets and azimuthal balancing between (jets, Wγ) systems**

Wγ+ 2 jets Cross-section Measurements

 \Box Event categorization based on the barrel/enadcap photons and in bins of m_{Iy} & m_{jj}

- □ Measurement of EWK-only and EWK+QCD fiducial and differential cross-sections in several observables -- p_T^{γ} , p_T^{-1} , p_T^{-j1} , m_{jj} , $m_{l\gamma}$, $\Delta \eta_{jj}$ PRD 105 (2022) 052003
- Measurements are consistent with the SM predictions :

 σ_{EW}^{fid} = 19.2 ^{+4.0} _{-3.9} fb & σ_{EW+QCD}^{fid} = 90 ^{+11.} ₋₁₀ fb

ICHEPAP2023, SINP, Kolkata, Dec 11-15, 2023

CMS.

 \diamond Aim to probe SM quartic coupling at tree level

♦ BSM contributions (resonant and non-resonant) accessed through effective-field-theory (EFT) approach

- $\diamond\, {\sf Events}$ with in-tact protons in the forward region
 - \diamond PPS can detects proton momenta ~200m from the CMS IP using the LHC magnets
 - ♦ SM cross-sections: 50 fb ($\gamma\gamma \rightarrow$ WW) & 0.5 fb ($\gamma\gamma \rightarrow$ ZZ)

$\gamma\gamma \rightarrow WW/ZZ$ production at the LHC

 \diamond Search for weak vector bosons in boosted and merged jets m_{ii} >1126 GeV

JHEP 07(2023) 229

Summary of SM cross-section measurements

Inner colored bars statistical uncertainty, outer narrow bars statistical+systematic uncertainty Light to Dark colored bars: 2.76, 5.02, 7, 8, 13, 13.6 TeV, Black bars: theory prediction

Recent Top results (Run II & Run III)

Top pair-production cross-section at $\sqrt{s}=13.6$ TeV

JHEP 08 (2023) 204

- First measurement of pair production crosssection using 1.21 fb⁻¹ dataset in semi-leptonic and di-leptonic modes
- Event categorization based on the lepton flavor and number of bjets
- Extraction of crosssections fitting the yields in each category of events

Source	Uncertainty (%)			
Lepton ID efficiencies	1.6			
Trigger efficiency	0.3			
JES	0.6			
b tagging efficiency	1.1			
Pileup reweighting	0.5			
ME scale, $t\bar{t}$	0.5			
ME scale, backgrounds	0.2			
ME/PS matching	0.1			
PS scales	0.3			
PDF and $\alpha_{\rm S}$	0.3			
Top quark $p_{\rm T}$	0.5			
tW background	0.7			
<i>t</i> -channel single-t background	d 0.4			
Z+jets background	0.3			
W+jets background	< 0.1			
Diboson background	0.6			
QCD multijet background	0.3			
Statistical uncertainty	0.5			
Combined uncertainty	2.5			
Integrated luminosity	2.3			

$$\Box \sigma_{measured} = 881 \pm 23 \pm 20$$
 (lumi) pb
 $\Box \sigma_{SM} = 924^{+32}_{-40}$ pb

ccepted by PLB

ar)

Top pair-production cross-section at $\sqrt{s}=$

Measure tt and Z cross-section simultaneously, 29 fb⁻¹

• eµ channel for $t\bar{t}$

Top pair-production cross-section at $\sqrt{s}=$

ar) liccepted by PLB)

Uncertainty [%]

Category

Measure tt and Z cross-section simultaneously, 29 fb⁻¹

• eµ channel for tt

• ee and up for 7 cross-section	ഗ10 ¹¹	— <u>თ</u>	10 ¹¹ ፪			$\sigma_{t\bar{t}}$	$\sigma^{\rm nd.}_{Z \to \ell \ell}$	$R_{t\bar{t}/Z}$
		L	10 ¹⁰ A	$t\bar{t}$	$t\bar{t}$ parton shower/hadronisation	0.9	< 0.2	0.9
• Strate General s lumi dependence	>`` [\s =	=`Š' 'Ш			$t\bar{t}$ scale variations	0.4	< 0.2	0.4
		. —)-F			$t\bar{t}$ normalisation	-	< 0.2	-
e. count b-tag multiplicity	108	, i	10 ⁸	N	Top quark $p_{\rm T}$ reweighting	0.6	< 0.2	0.6
Strategy	10 ⁷		10 ⁷	Ζ	Z scale variations	< 0.2	0.4	0.3
 also extract b-tag efficiency 	10 ⁶			Bkg.	Single top modelling	0.6	< 0.2	0.6
• count b-tag multiplicity officiency			10°		Diboson modelling	< 0.2	< 0.2	0.2
 also ovtract b tag officionov 	10°		10 ⁵	-	$t\bar{t}V$ modelling	< 0.2	< 0.2	< 0.2
$N_1 = I G_{ze} (1 - C_{vev}) + N^b$	Kg 10 ⁴		10 ⁴		Fake and non-prompt leptons	0.6	< 0.2	0.6
$IV_{1} = LO_{II}Ce\mu 2Cb (I = CbCb) + IV_{1}$	² 10 ³		10	Lept.	Electron reconstruction	1.2	1.0	0.4
$N_1 = L\sigma_{t\bar{t}}\epsilon_{ett} 2\epsilon_b (1 - \zeta_b \epsilon_b) + N_{tbkg}$	10^2		10°		Muon reconstruction	1.4	1.4	0.3
$N_2 = L\sigma_{t\bar{t}}\epsilon_{e\mu}C_{b}\epsilon_{\bar{b}} + N_2^{-2},$	10		10 ²	Jets/tegging	Lepton trigger	0.4	0.4	0.4
$N_2 = L\sigma_{t\bar{t}}\epsilon_{e\mu}C_b\epsilon_b^2 + N_2^{OKg}, \qquad 2$			10	Jets/tagging	Flavour tagging	0.4	-	0.4
	. 1							0.5
porated luminosity σ_{τ} is the measured $t\bar{t}$ cross-section	12^{1} is 1	tł _·	[PDFs	0.5	< 0.2	0.5
$t_{t_{t_{t_{t_{t_{t_{t_{t_{t_{t_{t_{t_{t$		чр.	1.02		Pileup	0.7	0.8	< 0.2
tag a <i>b</i>D traffer the selection. ϵ_{au} is the efficiency for	r a <i>tī</i> eve	n Ē.	1		Luminosity	2.3	2.2	0.3
		\(0.98		Systematic uncertainty	3.2	2.8	1.8
is a tagging correlation coefficient that is close to	unity a	n ta	0.00		Statistical uncertainty	0.3	0.02	0.3
$\sigma_{t\bar{t}} = 850 \pm 3 \text{ (stat.)} \pm 18 \text{ (syst.)} \pm 20$) (lumí.	5			Total uncertainty	3.2	2.8	1.9
is with one (two) b_1 tags. The correlation factor, C_b	, is defin	ned	as C	$b = \epsilon_{bb}/$	ϵ_h^2 , where			
$R_{\bar{\mu}/7} = 1.145 \pm 0.003 \text{ (stat.)} \pm 0.021$	(syst.)	<u>± (</u>), QU2	z (lumi,				
probability to reconstruct and tag both <i>b</i> -jets, and it	. is esum	ale	a froi	m the M	onte Carlo			
The deviation of C_b from unity is caused by kinem	natic con	rrel	ation	s of the	two <i>b</i> -jets			
vent, implying that the probability to tag two b -jets	simultan	ieoi	usly i	s not exa	actly equal			
to tag one h jot equared The deviation of the C m	romotor	e fre	- 	itu ia m	accuration			
to tag one v -jet squared. The deviation of the C_b pa	arameter		nii ui	muy is m	casuleu III			
found to be less than 1%								

Summary of σ_{tt} measurements

LHC Top Working Group Combination (Nov, 2023)

ICHEPAP2023, SINP, Kolkata, Dec 11-15, 2023

 $t\bar{t}W$ and 4-top production with ATLAS

Rustem Ospanov for the ATLAS collaboration

EPJC 83 (2023) 496

>Very rare (~14 fb) process sensitive to r.ew physics models (2HDIM, compositeness, SUSY)

 $t\bar{t}W$ and 4-top production with ATLAS

Rustem Ospanov for the ATLAS collaboration

Observation of 4 top quarks

Very rare (~14 fb) process sensitive to new physics models (2HDM, compositeness, SUSY)

Observation combining several channels

- 2{SS, 3{ and 4{ channels
- improvements in lepton id, b-tagging, MVA analysis: 2 BDTs with 34 variables
- expected significance 4.9σ (ATLAS 4.3σ)

BDT score tttt

• measure: $\sigma_{t\bar{t}t\bar{t}} = 17.7^{+4.4}_{-4.0}$ pb, 5.6 σ significance

g

g

-marked

Observation of 4 top quarks

➢Very rare (~14 fb) process sensitive to new physics models (2HDM, compositeness, SUSY)

Observation combining several channels

- 2{SS, 3{ and 4{ channels
- improvements in lepton id, b-tagging, MVA analysis: 2 BDTs with 34 variables
- expected significance 4.9σ (ATLAS 4.3σ)
- measure: $\sigma_{t\bar{t}t\bar{t}} = 17.7^{+4.4}_{-4.0}$ pb, 5.6 σ significance

ICHEPAP2023, SINP, Kolkata, Dec 11-15, 2023

Summary of rare top processes

4 top cross-section

arXiv:2309.14442; submitted to JHEP

ICHEPAP2023, SINP, Kolkata, Dec 11-15, 2023

central renormalization and factorization scale in the POWHEG+OL+P8 t $\bar{b}b\bar{b}$ 4FS sample, justified by the previous measurements and by studies of fixed-order NLO QCD corrections to the t $\bar{t}b\bar{b}\bar{b}$ process [1], results in significantly larger cross sections in all phase space regions. These

 ± 12 (stat)

 ± 6 (stat)

 ± 5 (stat)

 ± 14 (stat)

POWHEG+OL+P8 ttbb 4FS

POWHEG+P8 tt 5FS

POWHEG+H7 tt 5FS

SHERPA+OL ttbb 4FS

MG5_aMC+P8 ttbb 4FS

MG5_aMC+P8 tt+jets FxFx 5FS

CMS, I+jets

CMS, boosted

* Preliminary

165

170

 171.77 ± 0.37

EPJC 75 (2015) 330

175

m_{top} [GeV]

172.76 ± 0.81 (0.22 ± 0.78)

180

13 TeV [20]

13 TeV [21]

19] arXiv:2108.1040

185

m_{top}=171.77 +/- 0.37 GeV

0.2% relative uncertainty

Summary & Conclusions

Oue to exceedingly well LHC performance, the SM measurements reached to an unprecedented regime

 \diamond No deviation from the SM have been observed so far

Extraordinary new measurements have been performed/completed with the full/partial Run 2 dataset

Challenging to reduce systematics (theory and experiment)

Increased statistics allows the scope for differential cross-section measurements in SM and Top quark processes

 \diamond EWK VBS and rare top quarks processes have been observed/established

Run 3 statistics would improve the measurement precision further, although with additional pile-up events deteriorating the detector performance

 $\diamond \mathbf{Scope}$ for probing the BSM physics further

CMS

Challenges ahead – pile-up

2023 (13.6 TeV): <µ> = 52

Major data-taking (with the HL-LHC) 3 ab⁻¹ is yet to be commence However, typical pile-up is projected to be 140-200

ATLAS SMP: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/StandardModelPublicResults</u>
 CMS SMP: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP</u>
 ATLAS Top: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults</u>
 CMS Top: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP</u>
 LHCTopWG: <u>https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCTopWG</u>

LHC Performance

- LHC Run III started in 2022 at $\sqrt{s}=13.6$ TeV and LHC has been setting new record-breaking luminosity
- Exceedingly well performance by the LHC with delivered luminosities increasing rapidly
- Many precision measurements and rare processes studies have been plausible mostly due to the LHC performance "beyond the design goal".

