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Standard Model of Particle Physics
ü Consists of all the known elementary particles till date (with 

masses ranging over 14 orders of magnitude!) encapsulating 
everything we know so far about the nature 

ü Remarkably successful in predicting phenomena involving wide 
range of cross-sections [10-3-1011 pb] and withstood many 
detailed scrutiny over the past few decades of terrestrial 
experiments!

ü Discovery of the Higgs boson in 2012 of course opened up the 
possibility for its property measurements; (so far) no deviations 
from the SM observed – see Vivek Sharma’s presentation

ü Yes, the SM is regarded an “effective theory” 

Not predicted/answered by the SM
Ø Hierarchy problem – new physics at TeV scale or 
      extremely fine-tuned Higgs mass?
Ø Dark matter –  Universe has larger mass than visible!
     (see presentations by A. Roy & B. Gomber on collider searches)
Ø Many more puzzling questions

Ø Matter/antimatter asymmetry
Ø Non-zero neutrino mass  
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The Large Hadron Collider (LHC)

ATLAS

CMS ALICE

Lake Geneva Lake Geneva

Spanning over 27 KM in circumference

One of the largest and the most
complex scientific instrument ever
conceived & built by humankind
Ø Magnetic field at 7 TeV: 8.33 Tesla; 

    operating temperature: 1.9 K

Ø Magnets: ~9300 (1232 dipole, 

     858 quadrupole, 6208 corrector)

Ø RF cavities: 8 per beam; 

      field at top energy ≈ 5 MV/m

Ø Maximum number of bunches: 2808

Ø Peak luminosity: 2.5 x 1034cm-2s-1

Ø Collision frequency at 40 MHz

Ø Power consumption: ~180 MW 
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The LHC

• Proton-proton (pp) collisions at 
√s=7-8 TeV (2010-12, Run 1); √s=13 
TeV (2015-18, Run 2); presently 
operational at √s=13.6 TeV (Run 3 
since 2022)

• ATLAS & CMS are the two general 
purpose particle physics 
experiments. 
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LHC Luminosity Accumulation
• Ongoing Run 3 started in 2022 at √s=13.6 TeV and LHC has been setting new record-breaking luminosity
• Exceedingly well performance by the LHC with delivered luminosities increasing rapidly
• Many precision measurements and rare processes studies have been plausible mostly due to the LHC 

performance “beyond the design goal”.
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ATLAS & CMS detectors

v multi-purpose detectors with tracker, calorimeter and muon systems with hermatic coverage
v Both have undergone upgrades during the Long shutdown 1 (LS1) 1 and LS2 already
v Major detector upgrade (Phase 2) to follow for the High-Luminosity operations (HL-LHC)
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Particle Detection/Identification (CMS)
• Photons

• Electromagnetic calorimeter 
(ECAL)

• Electrons/positrons
• Electromagnetic calorimeter
• Tracker

• Muons
• Muon system
• Tracker

• Charged hadrons (pions/proton)
• Hadron calorimeter (+ ECAL) 
• Tracker

• Neutral hadrons (neutrons)
• Hadron Calorimeter (+ECAL)
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The challenge @LHC
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² Number of produced 
events for  137 fb-1

²W bosons 2.7x1010

²Z bosons 8x109

²Top quarks 1.3x108

²Higgs 8x106

Impressive Accuracy for SM 
Measurements where the 
cross-sections vary over 8-9 
orders of magnitude!
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Inclusive Photon Production

JHEP 07 (2023) 086

Inclusive photon production

6

Measurement of inclusive isolated-photon cross section 
in ATLAS (full Run 2)
! Important measurement for test of pQCD
! SHERPA 2.2.2: 𝛾 + 0,1,2j @NLO + 3,4j@LO
! Fixed order predictions: JETPHOX (NLO) and NNLOJET 

(NNLO) 
! Constraints on PDF (especially gluon)

Inclusive photon production (ATLAS)

13 Lorenzo Rossini (Universität Freiburg) - Rencontres de Moriond 

Measurement of inclusive isolated-photon cross section in ATLAS, using 139 fb-1 data 
of Run 2. Last publication using only 36 fb-1.

• Important measurement for test of pQCD

• Constraints on the PDF (especially for gluon-

PDF, thanks to )

• Photon produced through two main 

processes

• Direct process → what we want to 

measure

• Fragmentation process → Photons 

produced inside jets due to neutral 
mesons decays! 


• Select isolated photons to remove photons 
from jets

• Cone-based isolation: R= 0.2 and R=0.4

qg → qγ

Direct process Fragmentation process

! Select isolated photons to 
remove photons from jets
! Cone-based isolation: 

R=0.2/0.4
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QCD Strong Coupling constant (⍺S)
SMP-22-015 

More: Talks by Leite/Lipka

Strong coupling constant 𝛼s

7

! The strong force is 
still the least well 
known interaction 
of nature  
αs uncertainty ~ 1% 

JHEP 07 (2023) 85

 Katerina Lipka (Tuesday) 
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JHEP 02 (2022) 142

v ⍺S uncertainty is ~1%

v Inclusive jets measurements to 
obtain/extract PDF and ⍺S 
simultaneously

v 13 TeV dataset with AK4/AK7 jets 
with pT>97 GeV and |y|<2.0
v Improved precision of the 

gluon at high x-values (NNL0)

Extracted αS(mZ)= 0.1166 ± 0.0017
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QCD Strong Coupling constant (⍺S)
SMP-22-015 

More: Talks by Leite/Lipka

Strong coupling constant 𝛼s
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v Improved precision of the 

gluon at high x-values (NNL0)
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Measurement of ⍺S from jet azimuthal correlation

v 13 TeV dataset with AK7 jets with pT>360 GeV 
and |eta|<2.5
v Sensitive to Scale uncertainty and the PDF 

choice
v ⍺S (MZ) extracted using different pT ranges 

ü ⍺S (MZ) ~ 0.117 with <10% relative uncertainty
ü Running coupling constant demonstrated up to 2 TeV

CMS-PAS-SMP-22-005
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Summary of W/Z cross-sections (5.02 & 13 TeV) 

q Precision measurement with the Vector Boson production at ⎷s=5.02 TeV ans 13 TeV in 
agreement with NNLO pQCD calculations

q All other experimental results are summarized as the function of center-of mass energy

CMS-PAS-SMP-20-004 (Aug, 2023)



ICHEPAP2023, SINP, Kolkata, Dec 11-15, 2023

Observation of W+W-VBS at the LHC 

q Precision measurement with the Vector Boson Scattering (VBS) processes are important for probing the 
Higgs sectors and hence understanding the electroweak symmetry-breaking

q Oppositely charged leptons with two jets (having high pseudorapidity gap) to target for the WW+2 jets 
events with the rejection for the QCD-induced processes and ttbar processes.
q Full Run 2 dataset with event selection for two Isolated leptons (electron/muon) with pT> 25 (13) GeV, 

and mll>50 GeV  and 2 jets along with the Missing Transverse Energy pmis
T> 20 GeV 

q At least two jets with pT>30 GeV , Δηjj>2.5 and mjj>300 GeV
q Further event categorization based on final state lepton flavors

PLB 841 (2023) 137495Electroweak VBS

QCD-induced 
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Observation of W+W-VBS at the LHC 

q Data-driven background 
normalization using 
dedicated control 
regions for major 
backgrounds-- Top, DY

q Deep Neural Network 
training to identify 
signal events

q W+W- VBS fiducial 
cross-section measured 
through simultaneous 
fits of DNN and other 
discriminating  
observables:

Signal enriched eμ region

Observed (expected) signal significance of 5.6σ (5.2σ)
σfiducial = 10.2 ± 2.0 fb
σSM = 9.1 ± 0.6 fb

PLB 841 (2023) 137495
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Wγ+ 2 jets production at the LHC 
PRD 105 (2022) 052003

q Precision measurement with the Vector Boson Scattering (VBS) processes are important for probing the 
Higgs sectors and hence understanding the electroweak symmetry-breaking

q Event selection optimized for the Vector Boson Scattering (VBS) signal (Wγ+2 jets) with the rejection for the 
non-VBS electroweak (EWK) and QCD-induced processes
q Isolated electron/muon pT> 35 GeV, a photon (pT> 25 GeV) and 2 jets along with the Missing Transverse 

Energy pmis
T> 30 GeV 

q Large pseudorapidity difference between the jets and azimuthal balancing between (jets, Wγ) systems

Non-VBS Electroweak Electroweak VBS QCD-induced 
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Wγ+ 2 jets Cross-section Measurements 
q Event categorization based on the barrel/enadcap photons and in bins of mlγ & mjj 
q Measurement of EWK-only and EWK+QCD fiducial and differential cross-sections in several 

observables -- pT
γ , pT

l , pT
j1, mjj, mlγ, Δηjj 

q Measurements are consistent with the SM predictions : 
σEW

fid = 19.2 +4.0 
-3.9 fb & σEW+QCD

fid = 90 +11.
-10 fb 

Differential cross-section

PRD 105 (2022) 052003



ICHEPAP2023, SINP, Kolkata, Dec 11-15, 2023

γγ→WW/ZZ production at the LHC

²Aim to probe SM quartic coupling at tree level
²BSM contributions (resonant and non-resonant) accessed through effective-field-theory (EFT) approach
²Events with in-tact protons in the forward region 

²PPS can detects proton momenta ~200m from the CMS IP using the LHC magnets
²  SM cross-sections: 50 fb (γγ→WW) & 0.5 fb (γγ→ZZ)

JHEP 07(2023) 229
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γγ→WW/ZZ production at the LHC
² Search for weak vector bosons in boosted and merged jets mjj >1126 GeV
² Background estimated from the control regions 

² Inverting the observables for jet topology and p-p matching
²  Further discrimination between WW and ZZ events using sum of jet masses 
² Limits on fiducial cross-section considering mVV>1 TeV and proton fractional charge <20%
² cross-section upper limit at 95% 

² σ (pp →pWWp) <67 fb
² σ (pp→pZZp) <43 fb

Both protons 
matched

JHEP 07(2023) 229
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Summary of SM cross-section measurements

²Many new measurements for rare SM process
² Rare electroweak diboson production processes are 

observed/established
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Top quark production modes at LHC

33Geoffrey GILLESGeoffrey GILLES

A particle abundantly produced at the LHC
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Why measuring rare processes?

Precise measurement of t(t̅)+X production:
● Provide a stringent test also of electroweak 

processes
○ Allow to extract SM parameters, as CKM matrix 

elements
● Access to several coupling (tγ,tW,tH) sensitive to new 

physics effects 

11/314-tops 25
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Top pair-production cross-section at √s=13.6 TeV

q First measurement of 
pair production cross-
section using 1.21 fb-1 
dataset in semi-leptonic 
and di-leptonic modes

q Event categorization 
based on the lepton 
flavor and number of b-
jets

q Extraction of cross-
sections fitting the 
yields in each category 
of events

JHEP 08 (2023) 204

qσmeasured = 881 ± 23 ± 20 (lumi) pb 
q σSM = 924 +32-40  pb
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Top pair-production cross-section at √s=13.6 TeV 

M. Cristinziani Top-quark physics @ Corfu2023

tt̄ production at 13.6 TeV
Measure tt̄ and Z cross-section simultaneously, 29 fb-1

• eμ channel for tt̄ 

• ee and μμ for Z cross-section

• ratio cancels lumi dependence
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arXiv:2308.09529

tt̄ 

arXiv:2308.09529 (accepted by PLB)
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tt̄ production at 13.6 TeV
Measure tt̄ and Z cross-section simultaneously, 29 fb-1

• eμ channel for tt̄ 

• ee and μμ for Z cross-section

• ratio cancels lumi dependence

Strategy

• count b-tag multiplicity

• also extract b-tag efficiency
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#1 = !fC C̄n4`2n1 (1 � ⇠1n1) + #
bkg
1 , (1)

#2 = !fC C̄n4`⇠1n
2
1 + #

bkg
2 , (2)

where ! is the integrated luminosity, fC C̄ is the measured CC̄ cross-section, n1 is the combined probability to
reconstruct and 1-tag a 1-jet after the selection, n4` is the efficiency for a CC̄ event to pass the opposite-sign
4` selection, ⇠1 is a tagging correlation coefficient that is close to unity and #

bkg
1(2) is the number of

background events with one (two) 1-tags. The correlation factor, ⇠1, is defined as ⇠1 = n11/n
2
1, where

n11 represents the probability to reconstruct and tag both 1-jets, and it is estimated from the Monte Carlo
(MC) simulation. The deviation of ⇠1 from unity is caused by kinematic correlations of the two 1-jets
produced in a CC̄ event, implying that the probability to tag two 1-jets simultaneously is not exactly equal
to the probability to tag one 1-jet squared. The deviation of the ⇠1 parameter from unity is measured in
simulation and is found to be less than 1%.

Using a binned profile-likelihood technique, the CC̄ production cross-section, the /-boson production
cross-sections and the ratio of the cross-sections, 'C C̄// , are measured. The /-boson production cross-
section f

fid.
/!✓✓ is measured with events with reconstructed <✓✓ satisfying 66 < <✓✓ < 116 GeV on the

detector-level, matching the fiducial-phase-space definition. Two separate fits are performed. In the first fit
fC C̄ , ffid.

/!✓✓ and n1 are implemented as unconstrained parameters, while in the second fit 'C C̄// , ffid.
/!✓✓and

n1 are used. In both fits, 44, `` and 4` events are used.

3 ATLAS detector

The ATLAS experiment [19] at the LHC is a multipurpose particle detector with a forward–backward
symmetric cylindrical geometry and a near 4c coverage in solid angle.1 It consists of an inner tracking
detector (ID) surrounded by a thin superconducting solenoid providing a 2 T axial magnetic field,
electromagnetic and hadron calorimeters, and a muon spectrometer (MS). The inner tracking detector
covers the pseudorapidity range |[ | < 2.5. It consists of silicon pixel, silicon microstrip, and transition
radiation tracking detectors. Lead/liquid-argon (LAr) sampling calorimeters provide electromagnetic (EM)
energy measurements with high granularity. A steel/scintillator-tile hadron calorimeter covers the central
pseudorapidity range (|[ | < 1.7). The endcap and forward regions are instrumented with LAr calorimeters
for both the EM and hadronic energy measurements up to |[ | = 4.9. The muon spectrometer surrounds the
calorimeters and is based on three large superconducting air-core toroidal magnets with eight coils each.
The field integral of the toroids ranges between 2.0 and 6.0 T m across most of the detector. The muon
spectrometer includes a system of precision tracking chambers and fast detectors for triggering. A two-level
trigger system is used to select events. The first-level trigger is implemented in hardware and uses a subset
of the detector information to accept events at a rate below 100 kHz. This is followed by a software-based
trigger that reduces the accepted event rate to 3 kHz on average, depending on the data-taking conditions.
An extensive software suite [38] is used in data simulation, in the reconstruction and analysis of real and
simulated data, in detector operations, and in the trigger and data acquisition systems of the experiment.
1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector

and the I-axis along the beam pipe. The G-axis points from the IP to the centre of the LHC ring, and the H-axis points
upwards. Cylindrical coordinates (A , q) are used in the transverse plane, q being the azimuthal angle around the I-axis.
The pseudorapidity is defined in terms of the polar angle \ as [ = � ln tan(\/2). Angular distance is measured in units of
�' ⌘

p
(�[)2 + (�q)2.
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tt̄ production at 13.6 TeV
Measure tt̄ and Z cross-section simultaneously, 29 fb-1

• eμ channel for tt̄ 

• ee and μμ for Z cross-section

• ratio cancels lumi dependence

Strategy

• count b-tag multiplicity

• also extract b-tag efficiency


Results

•   pb

•

σtt̄ = 850 ± 3 (stat.) ± 18 (syst.) ± 20 (lumi.)
Rtt̄/Z = 1.145 ± 0.003 (stat.) ± 0.021 (syst.) ± 0.002 (lumi.)
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where ! is the integrated luminosity, fC C̄ is the measured CC̄ cross-section, n1 is the combined probability to
reconstruct and 1-tag a 1-jet after the selection, n4` is the efficiency for a CC̄ event to pass the opposite-sign
4` selection, ⇠1 is a tagging correlation coefficient that is close to unity and #

bkg
1(2) is the number of

background events with one (two) 1-tags. The correlation factor, ⇠1, is defined as ⇠1 = n11/n
2
1, where

n11 represents the probability to reconstruct and tag both 1-jets, and it is estimated from the Monte Carlo
(MC) simulation. The deviation of ⇠1 from unity is caused by kinematic correlations of the two 1-jets
produced in a CC̄ event, implying that the probability to tag two 1-jets simultaneously is not exactly equal
to the probability to tag one 1-jet squared. The deviation of the ⇠1 parameter from unity is measured in
simulation and is found to be less than 1%.

Using a binned profile-likelihood technique, the CC̄ production cross-section, the /-boson production
cross-sections and the ratio of the cross-sections, 'C C̄// , are measured. The /-boson production cross-
section f

fid.
/!✓✓ is measured with events with reconstructed <✓✓ satisfying 66 < <✓✓ < 116 GeV on the

detector-level, matching the fiducial-phase-space definition. Two separate fits are performed. In the first fit
fC C̄ , ffid.

/!✓✓ and n1 are implemented as unconstrained parameters, while in the second fit 'C C̄// , ffid.
/!✓✓and

n1 are used. In both fits, 44, `` and 4` events are used.

3 ATLAS detector

The ATLAS experiment [19] at the LHC is a multipurpose particle detector with a forward–backward
symmetric cylindrical geometry and a near 4c coverage in solid angle.1 It consists of an inner tracking
detector (ID) surrounded by a thin superconducting solenoid providing a 2 T axial magnetic field,
electromagnetic and hadron calorimeters, and a muon spectrometer (MS). The inner tracking detector
covers the pseudorapidity range |[ | < 2.5. It consists of silicon pixel, silicon microstrip, and transition
radiation tracking detectors. Lead/liquid-argon (LAr) sampling calorimeters provide electromagnetic (EM)
energy measurements with high granularity. A steel/scintillator-tile hadron calorimeter covers the central
pseudorapidity range (|[ | < 1.7). The endcap and forward regions are instrumented with LAr calorimeters
for both the EM and hadronic energy measurements up to |[ | = 4.9. The muon spectrometer surrounds the
calorimeters and is based on three large superconducting air-core toroidal magnets with eight coils each.
The field integral of the toroids ranges between 2.0 and 6.0 T m across most of the detector. The muon
spectrometer includes a system of precision tracking chambers and fast detectors for triggering. A two-level
trigger system is used to select events. The first-level trigger is implemented in hardware and uses a subset
of the detector information to accept events at a rate below 100 kHz. This is followed by a software-based
trigger that reduces the accepted event rate to 3 kHz on average, depending on the data-taking conditions.
An extensive software suite [38] is used in data simulation, in the reconstruction and analysis of real and
simulated data, in detector operations, and in the trigger and data acquisition systems of the experiment.
1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector

and the I-axis along the beam pipe. The G-axis points from the IP to the centre of the LHC ring, and the H-axis points
upwards. Cylindrical coordinates (A, q) are used in the transverse plane, q being the azimuthal angle around the I-axis.
The pseudorapidity is defined in terms of the polar angle \ as [ = � ln tan(\/2). Angular distance is measured in units of
�' ⌘

p
(�[)2 + (�q)2.

3

tt̄ 

Category Uncertainty [%]
fC C̄ ffid.

/!✓✓ 'C C̄//

CC̄ CC̄ parton shower/hadronisation 0.9 < 0.2 0.9
CC̄ scale variations 0.4 < 0.2 0.4
CC̄ normalisation - < 0.2 -
Top quark ?T reweighting 0.6 < 0.2 0.6

/ / scale variations < 0.2 0.4 0.3
Bkg. Single top modelling 0.6 < 0.2 0.6

Diboson modelling < 0.2 < 0.2 0.2
CC̄+ modelling < 0.2 < 0.2 < 0.2
Fake and non-prompt leptons 0.6 < 0.2 0.6

Lept. Electron reconstruction 1.2 1.0 0.4
Muon reconstruction 1.4 1.4 0.3
Lepton trigger 0.4 0.4 0.4

Jets/tagging Jet reconstruction 0.4 - 0.4
Flavour tagging 0.4 - 0.3
PDFs 0.5 < 0.2 0.5
Pileup 0.7 0.8 < 0.2
Luminosity 2.3 2.2 0.3
Systematic uncertainty 3.2 2.8 1.8
Statistical uncertainty 0.3 0.02 0.3
Total uncertainty 3.2 2.8 1.9
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tt̄ production at 13.6 TeV
Measure tt̄ and Z cross-section simultaneously, 29 fb-1

• eμ channel for tt̄ 

• ee and μμ for Z cross-section

• ratio cancels lumi dependence
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tt̄ production at 13.6 TeV
Measure tt̄ and Z cross-section simultaneously, 29 fb-1

• eμ channel for tt̄ 

• ee and μμ for Z cross-section

• ratio cancels lumi dependence

Strategy

• count b-tag multiplicity

• also extract b-tag efficiency


7

arXiv:2308.09529

#1 = !fC C̄n4`2n1 (1 � ⇠1n1) + #
bkg
1 , (1)

#2 = !fC C̄n4`⇠1n
2
1 + #

bkg
2 , (2)

where ! is the integrated luminosity, fC C̄ is the measured CC̄ cross-section, n1 is the combined probability to
reconstruct and 1-tag a 1-jet after the selection, n4` is the efficiency for a CC̄ event to pass the opposite-sign
4` selection, ⇠1 is a tagging correlation coefficient that is close to unity and #

bkg
1(2) is the number of

background events with one (two) 1-tags. The correlation factor, ⇠1, is defined as ⇠1 = n11/n
2
1, where

n11 represents the probability to reconstruct and tag both 1-jets, and it is estimated from the Monte Carlo
(MC) simulation. The deviation of ⇠1 from unity is caused by kinematic correlations of the two 1-jets
produced in a CC̄ event, implying that the probability to tag two 1-jets simultaneously is not exactly equal
to the probability to tag one 1-jet squared. The deviation of the ⇠1 parameter from unity is measured in
simulation and is found to be less than 1%.

Using a binned profile-likelihood technique, the CC̄ production cross-section, the /-boson production
cross-sections and the ratio of the cross-sections, 'C C̄// , are measured. The /-boson production cross-
section f

fid.
/!✓✓ is measured with events with reconstructed <✓✓ satisfying 66 < <✓✓ < 116 GeV on the

detector-level, matching the fiducial-phase-space definition. Two separate fits are performed. In the first fit
fC C̄ , ffid.

/!✓✓ and n1 are implemented as unconstrained parameters, while in the second fit 'C C̄// , ffid.
/!✓✓and

n1 are used. In both fits, 44, `` and 4` events are used.

3 ATLAS detector

The ATLAS experiment [19] at the LHC is a multipurpose particle detector with a forward–backward
symmetric cylindrical geometry and a near 4c coverage in solid angle.1 It consists of an inner tracking
detector (ID) surrounded by a thin superconducting solenoid providing a 2 T axial magnetic field,
electromagnetic and hadron calorimeters, and a muon spectrometer (MS). The inner tracking detector
covers the pseudorapidity range |[ | < 2.5. It consists of silicon pixel, silicon microstrip, and transition
radiation tracking detectors. Lead/liquid-argon (LAr) sampling calorimeters provide electromagnetic (EM)
energy measurements with high granularity. A steel/scintillator-tile hadron calorimeter covers the central
pseudorapidity range (|[ | < 1.7). The endcap and forward regions are instrumented with LAr calorimeters
for both the EM and hadronic energy measurements up to |[ | = 4.9. The muon spectrometer surrounds the
calorimeters and is based on three large superconducting air-core toroidal magnets with eight coils each.
The field integral of the toroids ranges between 2.0 and 6.0 T m across most of the detector. The muon
spectrometer includes a system of precision tracking chambers and fast detectors for triggering. A two-level
trigger system is used to select events. The first-level trigger is implemented in hardware and uses a subset
of the detector information to accept events at a rate below 100 kHz. This is followed by a software-based
trigger that reduces the accepted event rate to 3 kHz on average, depending on the data-taking conditions.
An extensive software suite [38] is used in data simulation, in the reconstruction and analysis of real and
simulated data, in detector operations, and in the trigger and data acquisition systems of the experiment.
1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector

and the I-axis along the beam pipe. The G-axis points from the IP to the centre of the LHC ring, and the H-axis points
upwards. Cylindrical coordinates (A , q) are used in the transverse plane, q being the azimuthal angle around the I-axis.
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tt̄ production at 13.6 TeV
Measure tt̄ and Z cross-section simultaneously, 29 fb-1

• eμ channel for tt̄ 

• ee and μμ for Z cross-section

• ratio cancels lumi dependence

Strategy

• count b-tag multiplicity

• also extract b-tag efficiency


Results
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σtt̄ = 850 ± 3 (stat.) ± 18 (syst.) ± 20 (lumi.)
Rtt̄/Z = 1.145 ± 0.003 (stat.) ± 0.021 (syst.) ± 0.002 (lumi.)
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produced in a CC̄ event, implying that the probability to tag two 1-jets simultaneously is not exactly equal
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pseudorapidity range (|[ | < 1.7). The endcap and forward regions are instrumented with LAr calorimeters
for both the EM and hadronic energy measurements up to |[ | = 4.9. The muon spectrometer surrounds the
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The field integral of the toroids ranges between 2.0 and 6.0 T m across most of the detector. The muon
spectrometer includes a system of precision tracking chambers and fast detectors for triggering. A two-level
trigger system is used to select events. The first-level trigger is implemented in hardware and uses a subset
of the detector information to accept events at a rate below 100 kHz. This is followed by a software-based
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Summary of σtt measurements
LHC Top Working Group Combination (Nov, 2023)

Top pair-production cross-section at √s=5.02 TeV 
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Observation of 4 top quarks
ØVery rare (~14 fb) process sensitive to new physics models (2HDM, compositeness, SUSY)

M. Cristinziani Top-quark physics @ Corfu2023

Four top-quark production
Observation combining several channels

• 2ℓSS and 3ℓ channels

• 8 control regions – tt̄W+ and tt̄W- are determined independently 

• non-prompt leptons determined from pT (3rd lepton)

• employ Graph Neural Network, check distributions for GNN score > 0.6

• measure:  pb, 6.1σ significanceσtt̄tt̄ = 22.5+6.6

−5.5

16

EPJC 83 (2023) 496

4-top production: tt̄W control regions

o tt̄W
+ and tt̄W

� are measured independently from corresponding CRS

– Measure normalisation and scaling as a function of jet multiplicity

4 5  6≥

jN

0.7
0.85

1
1.15

 

D
at

a 
/ P

re
d. 0

50

100

150

200

250

300

Ev
en

ts

ATLAS
-1 = 13 TeV, 140 fbs

+jets+WtCR t
Post-Fit

Data tttt
Wtt Ztt
Htt QmisID

Mat. Conv. HF e
*γLow m µHF 

Others ttt
Uncertainty Pre-Fit

4 5 6 7 8 9  10≥

jN

0.5
0.75

1
1.25

 
D

at
a 

/ P
re

d. 0

20

40

60

80

100

120

140

160

180

200

220

Ev
en

ts

ATLAS
-1 = 13 TeV, 140 fbs

CR 1b(+)
Post-Fit

Data tttt
Wtt Ztt
Htt QmisID

Mat. Conv. HF e
*γLow m µHF 

Others ttt
Uncertainty Pre-Fit

4 5 6 7 8 9  10≥

jN

0

1

2

 

D
at

a 
/ P

re
d. 0

20

40

60

80

100

120

140

160

180-
-N +N

ATLAS
-1 = 13 TeV, 140 fbs

CRs+SR
Post-Fit

Data Wtt
tttt Others

Uncertainty

tt̄W and 4-top production with ATLAS Rustem Ospanov for the ATLAS collaboration 14

4-top production: control regions for mis-identified leptons

o Normalise mis-identified leptons from dedicated CRs

– Non-prompt electrons and muons produced in b/c jets ! use pT of 3rd lepton

– Photons interacting with detector and mis-identified as electrons
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4-top production: signal region

o Select signal candidates with Graph Neural Network (GNN)

– Fit GNN distribution to measure 4-top signal strength µ = 1.9 ± 0.4(stat.) +0.7
�0.4(syst.)

– Study di↵erential distributions for GNN> 0.6
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4-top production: signal region distributions

o Study di↵erential distributions for GNN> 0.6

– Excellent agreement of observed data with the shapes predicted by SM
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Observation of 4 top quarks
ØVery rare (~14 fb) process sensitive to new physics models (2HDM, compositeness, SUSY)

M. Cristinziani Top-quark physics @ Corfu2023

Four top-quark production
Observation combining several channels

• 2ℓSS and 3ℓ channels

• 8 control regions – tt̄W+ and tt̄W- are determined independently 

• non-prompt leptons determined from pT (3rd lepton)

• employ Graph Neural Network, check distributions for GNN score > 0.6

• measure:  pb, 6.1σ significanceσtt̄tt̄ = 22.5+6.6

−5.5

16
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4-top production: tt̄W control regions

o tt̄W
+ and tt̄W

� are measured independently from corresponding CRS

– Measure normalisation and scaling as a function of jet multiplicity
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4-top production: control regions for mis-identified leptons

o Normalise mis-identified leptons from dedicated CRs

– Non-prompt electrons and muons produced in b/c jets ! use pT of 3rd lepton

– Photons interacting with detector and mis-identified as electrons
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4-top production: signal region

o Select signal candidates with Graph Neural Network (GNN)

– Fit GNN distribution to measure 4-top signal strength µ = 1.9 ± 0.4(stat.) +0.7
�0.4(syst.)

– Study di↵erential distributions for GNN> 0.6
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4-top production: signal region distributions

o Study di↵erential distributions for GNN> 0.6

– Excellent agreement of observed data with the shapes predicted by SM
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Observation of 4 top quarks
ØVery rare (~14 fb) process sensitive to new physics models (2HDM, compositeness, SUSY)

PLB 847 (2023) 138290
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Observation of 4 top quarks
ØVery rare (~14 fb) process sensitive to new physics models (2HDM, compositeness, SUSY)
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Summary of rare top processes

LHC Top Working Group Combination (Nov, 2023)

4 top cross-section arXiv:2309.14442; submitted to JHEP

Top quark extremely rare: tt̄tt̄

31

Lepton-Photon ‘23 27

The search for 4top production

After 4 years of data taking + another 4 years analyzing the data

At Moriond ‘23:

Both collaborations presented a re-
analysis of the most powerful 
channel: better signal acceptance, 
better calibrations, better ML 
discriminant, better background 
estimates… 

Double observation! 

ATLAS: 6.1⌥ EPJC83 (2023) 496,
https://atlas.cern/Updates/Physics-Briefing/observation-4tops

CMS: 5.6⌥ arXiv:2305.13439

ATLAS: 6.1σ  

CMS: 5.6σ      arXiv:2305.13 

06/2023 (published)
EPJ C 83 (2023) 496

05/2023 
arXiv:2305.13439  

03/2023
TOP-22-009 Top and bottom: tt̄bb̄8. Results 23

Figure 5: Measured inclusive cross sections for each considered phase space, compared to pre-
dictions from different ttbb simulation approaches shown as coloured symbols. The blue
colour is reserved for models using massive b quarks and NLO QCD ttbb matrix elements,
while red is used for the inclusive tt generators at NLO in QCD with massless b quarks. The
right panel shows the ratios between the predicted and measured cross sections.

Table 4: Measured and predicted inclusive cross sections in the four considered phase space
regions (in fb).

Fiducial phase space 5j3b 6j3b3l 6j4b 7j4b3l

Measured cross section 2368 1036 289 144
±142 (syst) ±90 (syst) ±36 (syst) ±25 (syst)
±14 (stat) ±12 (stat) ±6 (stat) ±5 (stat)

POWHEG+OL+P8 ttbb 4FS 2361 1183 361 197
POWHEG+P8 tt 5FS 1791 899 240 129
POWHEG+H7 tt 5FS 1665 762 197 95
SHERPA+OL ttbb 4FS 1391 677 216 116
MG5 aMC+P8 ttbb 4FS 1024 524 187 101
MG5 aMC+P8 tt+jets FXFX 5FS 1560 712 203 101

central renormalization and factorization scale in the POWHEG+OL+P8 ttbb 4FS sample, justi-
fied by the previous measurements and by studies of fixed-order NLO QCD corrections to the
ttbbj process [1], results in significantly larger cross sections in all phase space regions. These
predictions agree well with the measurement in the 5j3b phase space, but overestimate the cross
section by 10–35% in the other phase space regions. Nevertheless, the POWHEG+OL+P8 ttbb
4FS predictions agree with the measurements when considering their renormalization scale
uncertainties of about 50%, estimated by varying the µR scale by a factor of two. When consid-
ering renormalization scale uncertainties in both the matrix element and in the parton shower,
the POWHEG+P8 tt 5FS predictions agree with the measurements in the phase space regions
targeting additional light radiation in ttb and ttbb events.

 difficult to model. Updated results, including 
differential cross-sections as input to improve 
predictions

tt̄bb̄

→important also for precise  
and  measurements 

tt̄tt̄
tt̄H
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Top mass measurement

EPJC 83 (2023) 963

165 170 175 180 185
 [GeV]topm

ATLAS+CMS Preliminary  = 7-13 TeVs summary, topm

* Preliminary

WGtopLHC
June 2023

World comb. (Mar 2014) [2]
stat
total uncertainty

total  stat

 recoil)± syst ± total (stat ± topm        Ref.s
WGtopLHCLHC comb. (Sep 2013) 7 TeV  [1] 0.88)± 0.95 (0.35 ±173.29 

World comb. (Mar 2014) 1.96-7 TeV  [2] 0.67)± 0.76 (0.36 ±173.34 
ATLAS, l+jets 7 TeV  [3] 1.02)± 1.27 (0.75 ±172.33 
ATLAS, dilepton 7 TeV  [3] 1.30)± 1.41 (0.54 ±173.79 
ATLAS, all jets 7 TeV  [4] 1.2)± 1.8 (1.4 ±175.1 
ATLAS, single top 8 TeV  [5] 2.0)± 2.1 (0.7 ±172.2 
ATLAS, dilepton 8 TeV  [6] 0.74)± 0.85 (0.41 ±172.99 
ATLAS, all jets 8 TeV  [7] 1.01)± 1.15 (0.55 ±173.72 
ATLAS, l+jets 8 TeV  [8] 0.82)± 0.91 (0.39 ±172.08 
ATLAS comb. (Oct 2018) 7+8 TeV  [8] 0.41)± 0.48 (0.25 ±172.69 
ATLAS, leptonic invariant mass 13 TeV  [9] 0.25)± 0.66 ± 0.81 (0.39 ±174.41 
ATLAS, dilepton (*) 13 TeV  [10] 0.39)± 0.67 ± 0.80 (0.20 ±172.21 
CMS, l+jets 7 TeV  [11] 0.97)± 1.06 (0.43 ±173.49 
CMS, dilepton 7 TeV  [12] 1.46)± 1.52 (0.43 ±172.50 
CMS, all jets 7 TeV  [13] 1.23)± 1.41 (0.69 ±173.49 
CMS, l+jets 8 TeV  [14] 0.48)± 0.51 (0.16 ±172.35 
CMS, dilepton 8 TeV  [14] 1.22)± 1.23 (0.19 ±172.82 
CMS, all jets 8 TeV  [14] 0.59)± 0.64 (0.25 ±172.32 
CMS, single top 8 TeV  [15] 0.95)± 1.22 (0.77 ±172.95 
CMS comb. (Sep 2015) 7+8 TeV  [14] 0.47)± 0.48 (0.13 ±172.44 
CMS, l+jets 13 TeV  [16] 0.62)± 0.63 (0.08 ±172.25 
CMS, dilepton 13 TeV  [17] 0.69)± 0.70 (0.14 ±172.33 
CMS, all jets 13 TeV  [18] 0.70)± 0.73 (0.20 ±172.34 
CMS, single top 13 TeV  [19] 0.70)± 0.77 (0.32 ±172.13 
CMS, l+jets 13 TeV  [20] 0.37±171.77 
CMS, boosted 13 TeV  [21] 0.78)± 0.81 (0.22 ±172.76 

[1] ATLAS-CONF-2013-102
[2] arXiv:1403.4427
[3] EPJC 75 (2015) 330
[4] EPJC 75 (2015) 158
[5] ATLAS-CONF-2014-055
[6] PLB 761 (2016) 350
[7] JHEP 09 (2017) 118
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[18] EPJC 79 (2019) 313
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CMS
Simulation

Lepton+jets channel with kinematic fit and 
profile likelihood method using up to five 
observables
mtop=171.77 +/- 0.37 GeV
! 0.2% relative uncertainty

02/2023 (submitted)
TOP-20-008 

Histogram Set label
Observable Category 1D 2D 3D 4D 5D
mfit

t Pgof > 0.2 ⇥ ⇥ ⇥ ⇥ ⇥
mreco

W Pgof > 0.2 ⇥ ⇥ ⇥ ⇥
mreco

`b Pgof < 0.2 ⇥ ⇥ ⇥
mreco

`b /mfit
t Pgof > 0.2 ⇥ ⇥

Rreco
bq Pgof > 0.2 ⇥

LHC Top Working Group Combination (June, 2023)
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Summary & Conclusions

²Due to exceedingly well LHC performance, the SM measurements reached to an 
unprecedented regime 
² No deviation from the SM have been observed so far
² Extraordinary new measurements have been performed/completed    with 

the full/partial Run 2 dataset
² Challenging to reduce systematics (theory and experiment) 

²Increased statistics allows the scope for differential cross-section 
measurements in SM and Top quark processes
²EWK VBS and rare top quarks processes have been observed/established 

²Run 3 statistics would improve the measurement precision further, although 
with additional pile-up events deteriorating the detector performance
²Scope for probing the BSM physics further
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Challenges ahead – pile-up 

² Major data-taking (with the HL-LHC) 3 ab-1 is yet to be commence
² However, typical pile-up is projected to be 140-200
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LHC Performance
• LHC Run III started in 2022 at √s=13.6 TeV and LHC has been setting new record-breaking luminosity
• Exceedingly well performance by the LHC with delivered luminosities increasing rapidly
• Many precision measurements and rare processes studies have been plausible mostly due to the LHC 

performance “beyond the design goal”.

• Run I -- 2010-12
• Run II – 2015-18
• Run III – 2022-


