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of the Minimal Supersymmetric Standard Model. 
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Traditional dark matter searches optimized to detect the lightest neutralino
of the Minimal Supersymmetric Standard Model. 

Modern approach: 
 Be agnostic about the model. 
 Identify distinct DM signals that allow to explore as much 
parameter space as possible. 

No stone must be left unturned!
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Number of particles of the type “i” produced at the position r 
per unit time and unit volume:
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Neutral particles propagate in straight lines practically without losing
energy. Charged particles, on the other hand, propagate in a complicated 
way through the tangled magnetic field of our Galaxy.
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Possible targets for detection of gamma-rays from annihilation

- Current experiments probe the thermal annihilation 
cross-section  into bb, for m<100 GeV, assuming 
s-wave annihilation.
- p-wave annihilation unconstrained.
- Beware of uncertainties in the J-factors.
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Possible targets for detection of gamma-rays from annihilation

Take the sky map in a given energy bin 
and subtract the known backgrounds:
- Sources
- Spatial template for diffuse 
   galactic emission
        p0 component
        Bremmstrahlung component
        ICS component
- Fermi bubbles
- Isotropic (extragalactic) component
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   galactic emission
        p0 component
        Bremmstrahlung component
        ICS component
- Fermi bubbles
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Fermi coll. ‘17



  

Antimatter from dark matter annihilationAntimatter from dark matter annihilation
Antimatter particles propagate through the tangled magnetic field of
the galaxy in a complicated way, losing energy on their way. 

Model the propagation with a diffusion equation:

Assumptions on the quantities entering are necessary.

Still, very good agreement between the expected antiproton flux 
from collisions of cosmic rays on the nuclei of the interstellar 
medium, and the antiproton data.  

Reinert, Winkler. 
1712.00002

AMS-02



  

Antimatter from dark matter annihilationAntimatter from dark matter annihilation
Antimatter particles propagate through the tangled magnetic field of
the galaxy in a complicated way, losing energy on their way. 

Model the propagation with a diffusion equation:

Assumptions on the quantities entering are necessary.

Still, very good agreement between the expected antiproton flux 
from collisions of cosmic rays on the nuclei of the interstellar 
medium, and the antiproton data.  

Reinert, Winkler. 
1712.00002



spin

Scattering cross-section off nucleons

Self-coupling

Annihilation cross-section into some SM particle 

Probing the scattering with nucleonsProbing the scattering with nucleons



The Sun (and the Earth) might be moving through a “gas” of dark matter particles. 

Sun

v~200 km/s
WIMPs

v~200 km/s

Once in a while a dark matter particle will interact with a nucleus. The
nucleus then recoils, producing vibrations, ionizations or scintillation light 
in the detector.

DM DM

Nuclear recoil

No significant excess detected so far
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Smallprint:
- DM interacts only through the spin-independent interaction
- DM couples with equal strength to protons and neutrons (isoscalar)
- Local DM density r=0.3 GeV/cm3.
- DM velocity distribution given by a Maxwell-Boltzmann, truncated at the escape velocity.
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- Local DM density r=0.3 GeV/cm3.
- DM velocity distribution given by a Maxwell-Boltzmann, truncated 
at the escape velocity.
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Consider the Hamiltonian of the SI interaction:

The two interactions can interfere.  

Probing the scattering with nucleonsProbing the scattering with nucleons

Brenner et al ‘22
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IceCube collaboration
arXiv:1612.05949

Observations consistent with the background-only hypothesis
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IceCube coll’12
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PICO coll’19
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Sizable DM self-coupling 
(as for the protons)
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Density profile of dark stars calculable from the Klein-Gordon equation 
in curved spacetime (for bosonic DM) and the Einstein equations:

Colpi et al’86
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Density profile of dark stars calculable from the Klein-Gordon equation 
in curved spacetime (for bosonic DM) and the Einstein equations:
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(For m=1 GeV, l=1)

Dark stars are very compact objects

Colpi et al’86
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Sizable DM self-coupling 
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Using DSs to probe scattering with nucleonsUsing DSs to probe scattering with nucleons

The “dark star” could be very luminous in gamma-rays

If L=10-4 Lsol, current instruments could detect up to 100 sources, 
if 1% of the dark matter is in the form of dark stars.  

Brenner et al’23



Probing the scattering with electronsProbing the scattering with electrons

From Catena et al’20



Probing the scattering with neutrinosProbing the scattering with neutrinos
The neutrino event IceCube-170922A was coincident in direction and time 
with a gamma-ray flare from the blazar TXS 0506+056, located 1.75 Gpc
away from the Earth.. 

Archival data found 135 events coincident with TXS 0506+056.  

First known source of high energy astrophysical neutrinos



Neutrinos propagate through the intergalactic medium and through the 
Milky Way before reaching us. If the dark matter neutrino cross-section 
is large, the neutrino flux would be attenuated. 

Probing the scattering with neutrinosProbing the scattering with neutrinos
The neutrino and photon fluxes can be qualitatively well reproduced 
in leptohadronic models.



Choi, Kim, Rott’19
Kelly, Machado ‘19
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The gravity of the black hole produces a “spike” in the dark matter 
distribution

In the center of the blazar it is located a supermassive black hole, with 
mass ~ 3108 Msun.

Gondolo, Silk’99, Peebles ‘72, Quinlan, Hernquist, Sigurdsson ‘95
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 “Traditional” searches put some tension on some WIMP scenarios. Many
other scenarios still poorly constrained by data. 

ConclusionsConclusions

 Better experiments are needed, but also new ideas for dark matter detection.

 After 40+ years of search, there is still no concluding evidence that dark 
matter is made of elementary particles.

 Astronomical objects (compact dark stars, active galactic nuclei, etc.) 
open new opportunities to detect non-gravitational signals of dark matter.
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