Effective Field theory in the high luminosity/ energy era

Beyond the Dim-6 SMEFT

ICHEPAP 2023 SINP, Kolkata

Rick Sandeepan Gupta
Tata Institute of Fundamental Research (Mumbai)

PRECISION HIGGS PHYSICS

- Studying the properties of the Higgs and other electroweak states is an obvious goal for particle physicists today.
- Precision Higgs physics has matured into a sophisticated field in the last 11 years since Higgs discovery
- The theoretical framework that has become standard is the dimension 6 Standard Model Effective Theory (SMEFT)

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i=1}^{59} \frac{c_i}{\Lambda^2} \mathcal{O}_i^6 + \cdots$$

model independent way to parametrise effect of heavy particles

OVERVIEW

- EFTs in the context of BSM studies have seen intense activity recently on both the theory and experimental side.
- Many new theoretical developments:
 - I. HEFT vs SMEFT
 - 2. Dimension 8
 - 3. Amplitude approach
 - 4. Differential/multivariate signatures of EFT operators
 - 5. Positivity bounds
 - 6. Many technical breakthroughs in operator counting, matching, RG etc
- I will cover the first 4 topics

OVERVIEW

- EFTs in the context of BSM studies have seen intense activity recently on both the theory and experimental side.
- Many new theoretical developments:
 - I. HEFT vs SMEFT
 - 2. Dimension 8
 - 3. Amplitude approach
 - 4. Differential/multivariate signatures of EFT operators
 - 5. Positivity bounds
 - 6. Many technical breakthroughs in operator counting, matching, RG etc
- I will cover the first 4 topics

HIGHER LUMINOSITIES/ENERGIES AT FUTURE COLLIDERS

- We are now entering the era of higher luminosities/energies with many proposed future colliders.
- These have the potential to achieve a new level of precision in Higgs physics

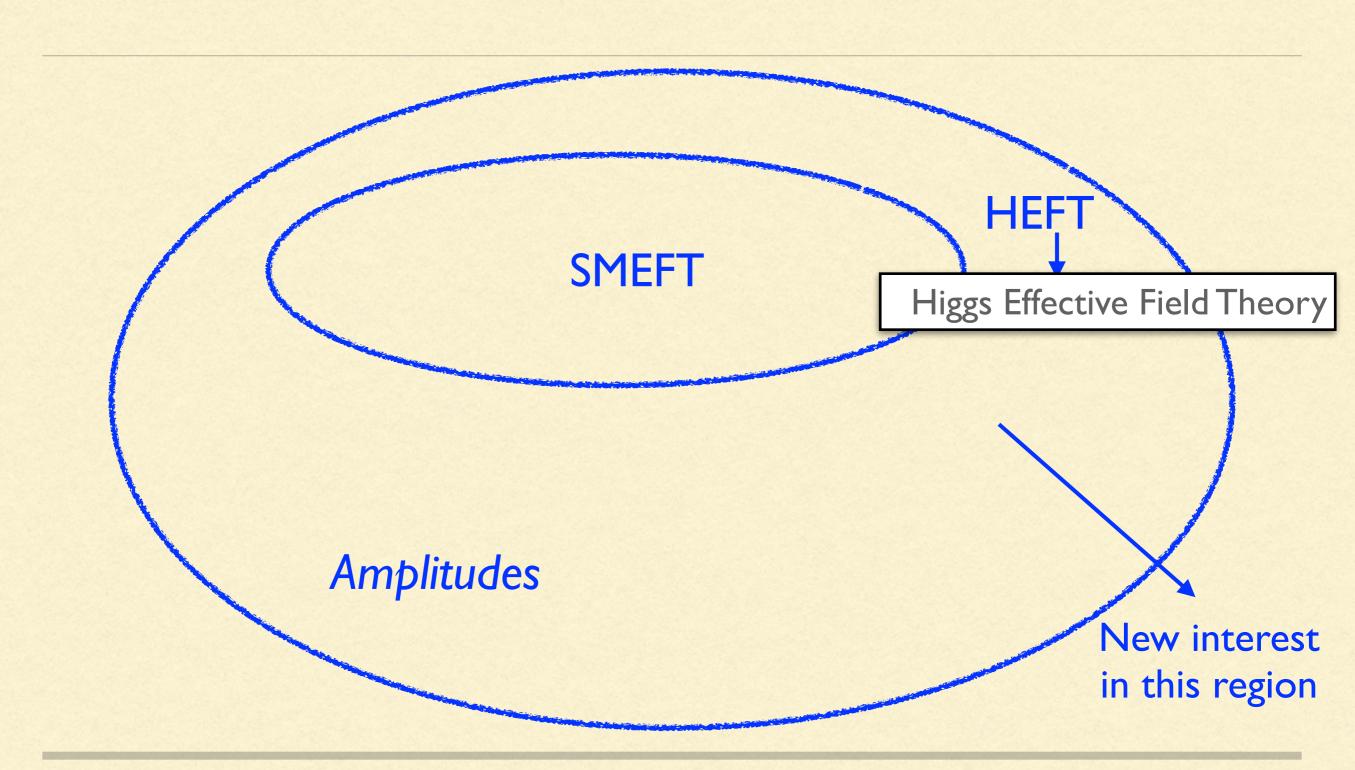
Can we say anything qualitatively new with all this new data?
Or just improve our existing constraints on EFT couplings?

PRESENT STATUS —— HIGHER LUMINOSITIES/ ENERGIES

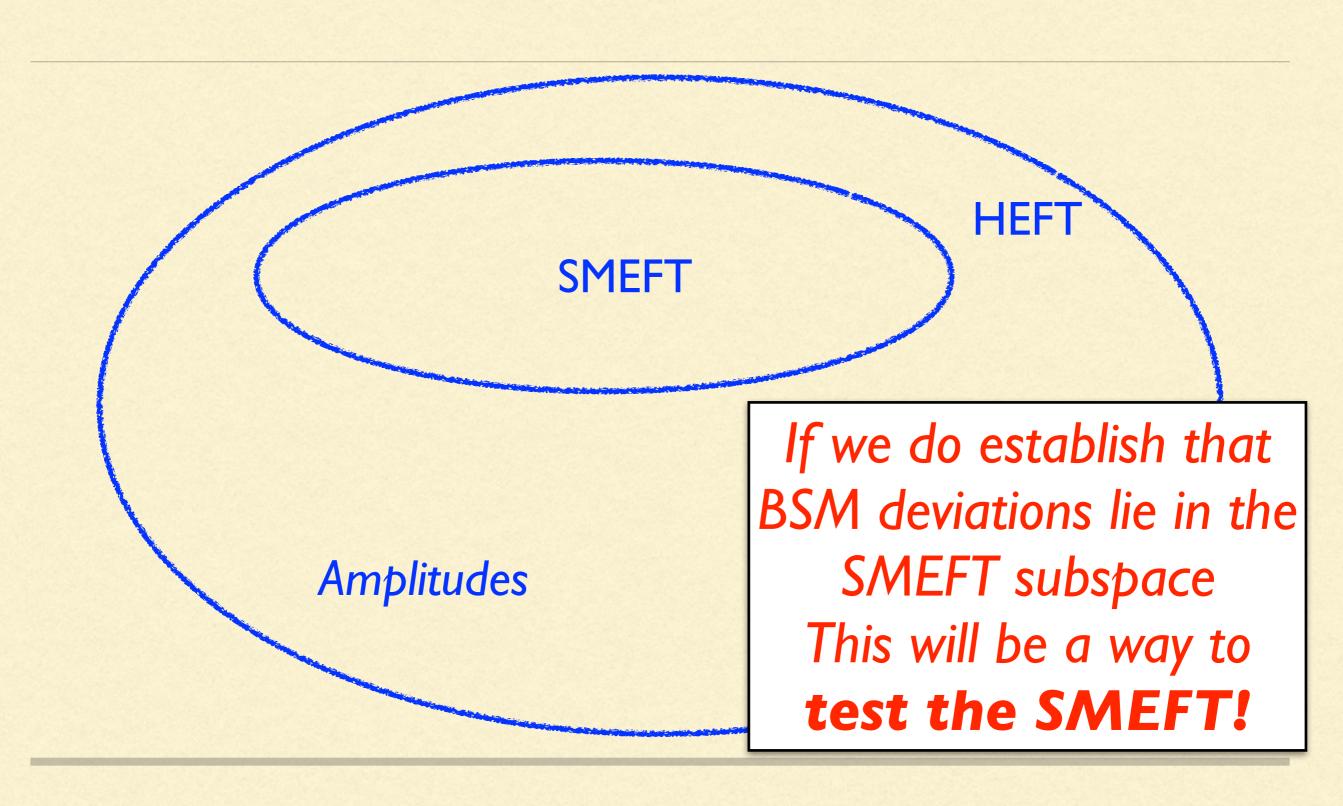
Experimental observables used:

Mostly rates & some one dimensional distributions

Fully differentiable observables, Multivariate distributions, Machine learning


Theoretical framework used:

Dimension 6 SMEFT


Dimension 8 SMEFT, HEFT, Amplitudes

Go beyond SMEFT assumptions, test them!

BEYOND SMEFT

BEYOND SMEFT

BEYOND SMEFT I: HEFT

- SMEFT not always the right choice.
- SMEFT: Observed 125 GeV h and goldstones eaten by W,Z make a doublet.

Essence of Higgs mechanism!

HEFT: More general, includes SMEFT as a special case. No connection assumed between h and goldstones/ VEV.

$$\begin{pmatrix}
G^{\pm} \\
iG_0 + \nu + h/\sqrt{2}
\end{pmatrix}$$

$$(G^{\pm}, v + iG_0) + h$$

$$U = \exp(2iX_i\pi_i/v)$$

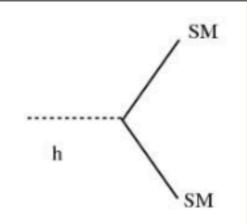
BEYOND SMEFT I: HEFT

- Lot of recent work: I. Alonso, Jenkins & Manohar (2016)
 - 2. Alonso, Jenkins & Manohar (2016)
 - 3. Fallkowski & Rattazzi (2019)
 - 4. Cohen, Craig, Lu & Sutherland (2020)
 - 5. Banta, Cohen, Craig, Lu & Sutherland (2021)
 - 6. Alonso & West (2021)
 - 7. Alonso & West (2022)
 - 8. Bertuzzo, Grojean & RSG (in prep)

HEFT BUT NOT SMEFT: UV SCENARIOS

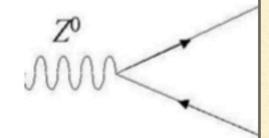
- Recent work shows that UV theories that map to HEFT and not SMEFT are ubiquitous. Whenever we integrate out states that get a majority of their mass from electroweak VEV, theory maps to HEFT. Eg. 4th generation fermions, 2HDMS etc
- Such particles were dubbed 'Loryons' by Cohen et al.
- Parameter space for many such UV scenarios wide open.

But what is the difference between these 2 expansions? How do we distinguish these 2 possibilities experimentally? Answer: The difference becomes clear at the level of anomalous couplings


ANOMALOUS COUPLINGS

Anomalous couplings are QCD & EM invariant Lagrangian terms

$$hW_{\mu\nu}^+ W^{-\mu\nu}$$


$$hZ_{\mu}\bar{f}_{L,R}\gamma^{\mu}f_{L,R}$$

(2) Electorweak precision observables (9):


$$Z_{\mu}ar{f}_{L,R}\gamma^{\mu}f_{L,R}$$

$$W_{\mu}^{+} \bar{
u}_{L} \gamma^{\mu} e_{L}$$

(3) Triple and Quartic Gauge couplings (3+4):

$$g_{1}^{Z} c_{\theta_{W}} Z^{\mu} \left(W^{+\nu} \hat{W}_{\mu\nu}^{-} - W^{-\nu} \hat{W}_{\mu\nu}^{+} \right) \\ \kappa_{\gamma} s_{\theta_{W}} \hat{A}^{\mu\nu} W_{\mu}^{+} W_{\nu}^{-} \\ \lambda_{\gamma} s_{\theta_{W}} \hat{A}^{\mu\nu} \hat{W}_{\mu}^{-\rho} \hat{W}_{\rho\nu}^{+}$$

ANOMALOUS COUPLINGS: HEFT VS SMEFT

- In SMEFT some linear combination of anomalous couplings are suppressed by powers of wrt HEFT.
- Eg.: VII couplings (I is a lepton)

$$SM + \delta g_{e_L}^Z Z_\mu \bar{e}_L \gamma^\mu e_L + \delta g_{e_R}^Z Z_\mu \bar{e}_R \gamma^\mu e_L + \delta g_{\nu_L}^Z Z_\mu \bar{\nu}_L \gamma^\mu \nu_L + \delta g_L^W (W_\mu^+ \bar{\nu}_L \gamma^\mu e_L + h \cdot c.)$$

4 anomalous couplings

In HEFT all these arise independently at $\mathcal{O}(v^2/\Lambda^2)$

In SMEFT 3 are
$$\mathcal{O}(v^2/\Lambda^2)$$
 and $\delta g_L^W = \frac{\cos\theta_W(\delta g_{\nu_L}^Z - \delta g_{e_L}^Z)}{\sqrt{2}} = \mathcal{O}(v^4/\Lambda^4)$

CORRELATIONS BETWEEN W/Z COUPLING DEVIATIONS

• 4 anomalous couplings related to Zff, Wff deviations

$$SM + \delta g_{e_L}^Z Z_\mu \bar{e}_L \gamma^\mu e_L + \delta g_{e_R}^Z Z_\mu \bar{e}_R \gamma^\mu e_L + \delta g_{\nu_L}^Z Z_\mu \bar{\nu}_L \gamma^\mu \nu_L + \delta g_L^W (W_\mu^+ \bar{\nu}_L \gamma^\mu e_L + h \cdot c.)$$

• At D6 level only 3 operators break these D4 predictions at $\mathcal{O}(v^2/\Lambda^2)$

$$\mathcal{O}_{e_R} = i H^\dagger \overset{\leftrightarrow}{D} H \; \bar{e}_R \gamma^\mu e_R \qquad \mathcal{O}_{L1} = i H^\dagger \overset{\leftrightarrow}{D} H \; \bar{L} \gamma^\mu L \qquad \mathcal{O}_{L3} = i H^\dagger \sigma^a \overset{\leftrightarrow}{D} H \; \bar{L} \sigma^a \gamma^\mu L$$

• For leptons four anomalous couplings and only 3 operators so I prediction:

$$\delta g_L^W = \frac{\cos \theta_W (\delta g_{\nu_L}^Z - \delta g_{e_L}^Z)}{\sqrt{2}} = 0$$

BREAKING OF D6 CORRELATION AT D8

• At D8 level another SU(2)x U(1) invariant operator breaks D6 prediction at $\mathcal{O}(v^4/\Lambda^4)$

$$\mathcal{O}_{L3'} = iH^{\dagger} \overleftrightarrow{D}_{\mu} H (H^{\dagger} \sigma^{a} H) \bar{L} \sigma^{a} \gamma^{\mu} L$$

• So of the 4 D4 predictions 3 are broken at $\mathcal{O}(v^2/\Lambda^2)$ and 1 at $\mathcal{O}(v^4/\Lambda^4)$

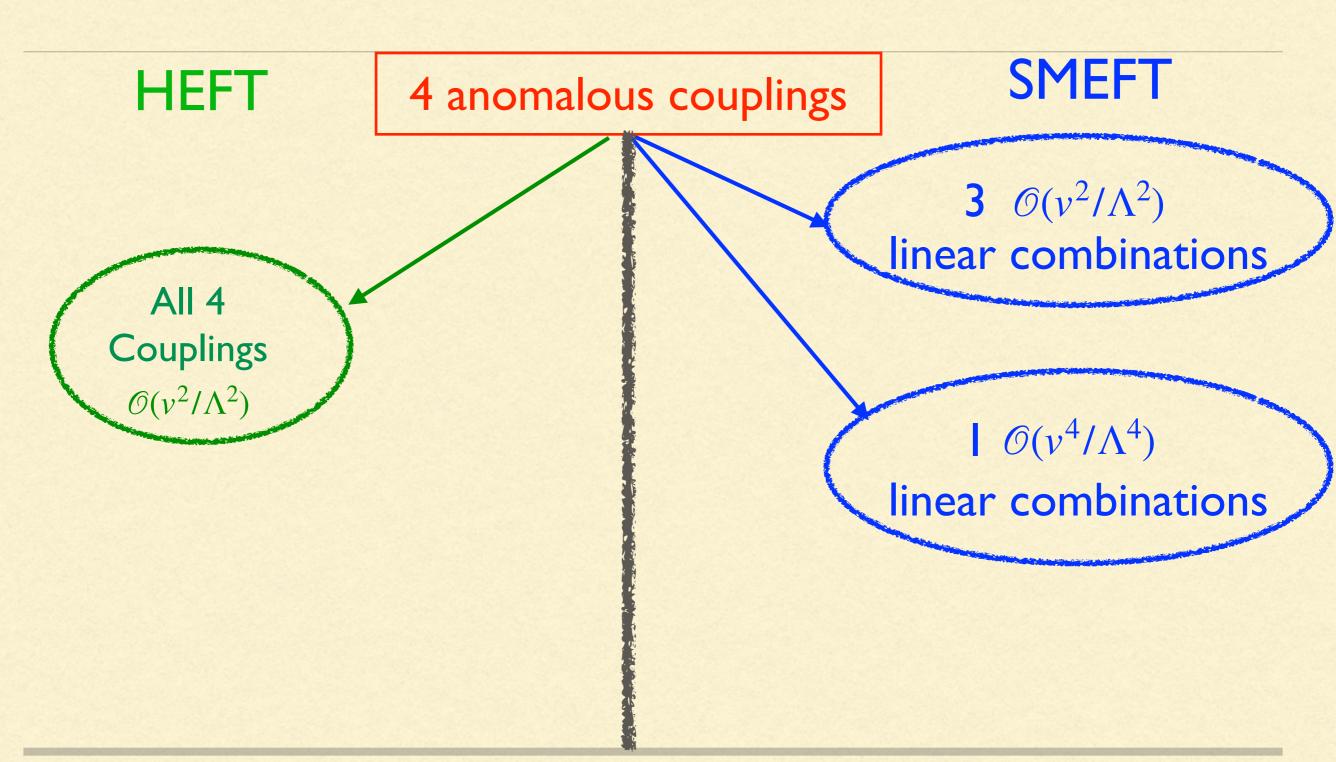
$$\delta g_L^W - \frac{\cos \theta_W (\delta g_{\nu_L}^Z - \delta g_{e_L}^Z)}{\sqrt{2}} = \mathcal{O}(v^4/\Lambda^4)$$

 At D6 level there were 3 independent couplings, at D8 we unblock a further observable/ open a 4th BSM primary

BREAKING OF D6 CORRELATION AT D8

• At D8 level another SU(2)x U(1) invariant operator breaks D6 prediction at $\mathcal{O}(v^4/\Lambda^4)$

So of the 4 D4 prediction


D6 SMEFT Prediction: Once Z coupling deviations are measured, W coupling deviation completely fixed!

at $\mathcal{O}(v^4/\Lambda^4)$

$$\delta g_L^W - \frac{\cos \theta_W (\delta g_{\nu_L}^Z - \delta g_{e_L}^Z)}{\sqrt{2}} = \mathcal{O}(v^4/\Lambda^4)$$

• At D6 level there were 3 independent couplings, at D8 we unblock a further observable/ open a 4th BSM primary

SMEFT VS HEFT

CONSIDER ALL MAJOR HIGGS PROCESSES

We can extend this approach to all the anomalous couplings that contribute to these Higgs production/ decay processes

List of Processes

$$gg \rightarrow h, hh, hhh$$
 $VV \rightarrow h, hh, hV$
 $ff(ff') \rightarrow Zh(Wh)$
 $h \rightarrow bb, cc, \tau\tau, \mu\mu$
 $h \rightarrow \gamma\gamma, Z\gamma$
 $h \rightarrow Wl\nu, Wjj, Zll, Zjj$

52 ANOMALOUS COUPLINGS

We find that these anomalous couplings —> that contribute to these processes*

List of Anomalous Couplings

Vff couplings (9)

$$\Delta \mathcal{L}_{Vff} = \sum_f \delta g_f^Z Z_\mu \bar{f} \gamma^\mu f_{L,R} + \delta g_{e\nu}^W (W_\mu^+ \bar{\nu}_L \gamma^\mu e_L + h.c.) + \delta g_{ud}^W (W_\mu^+ \bar{u}_L \gamma^\mu d_L + h.c.)$$

Anomalous TGC (4)

$$\begin{split} \Delta \mathcal{L}_{TGC} &= \mathrm{i} g c_{\theta_W} \left[\delta g_1^Z Z_\mu \left(W_\nu^+ \mathcal{W}^{-\mu\nu} - W_\nu^- \mathcal{W}^{+\mu\nu} \right) + \delta \kappa^Z W_\mu^+ W_\nu^- Z^{\mu\nu} \right] \\ &+ \mathrm{i} e \ \delta \kappa^\gamma W_\mu^+ W_\nu^- A^{\mu\nu} + g_5 \epsilon^{\mu\nu\rho\sigma} W_\mu^+ D_\rho W_\nu^- Z_\sigma \end{split}$$

Anomalous QGC (5)

$$\begin{split} \Delta \mathcal{L}_{QGC} &= g^2 c_{\theta_W}^2 \left[\delta g_{ZZ1}^Q Z^\mu Z^\nu W_\mu^- W_\nu^+ - \delta g_{ZZ2}^Q Z^\mu Z_\mu W^{-\nu} W_\nu^+ \right] + \frac{g^2}{4 c_{\theta_W}^4} h_{ZZ}^Q (Z^\mu Z_\mu)^2 \\ &\quad + \frac{g^2}{2} \left[\delta g_{WW1}^Q W^{-\mu} W^{+\nu} W_\mu^- W_\nu^+ - \delta g_{WW2}^Q \left(W^{-\mu} W_\mu^+ \right)^2 \right] \end{split}$$

Single Higgs (19)

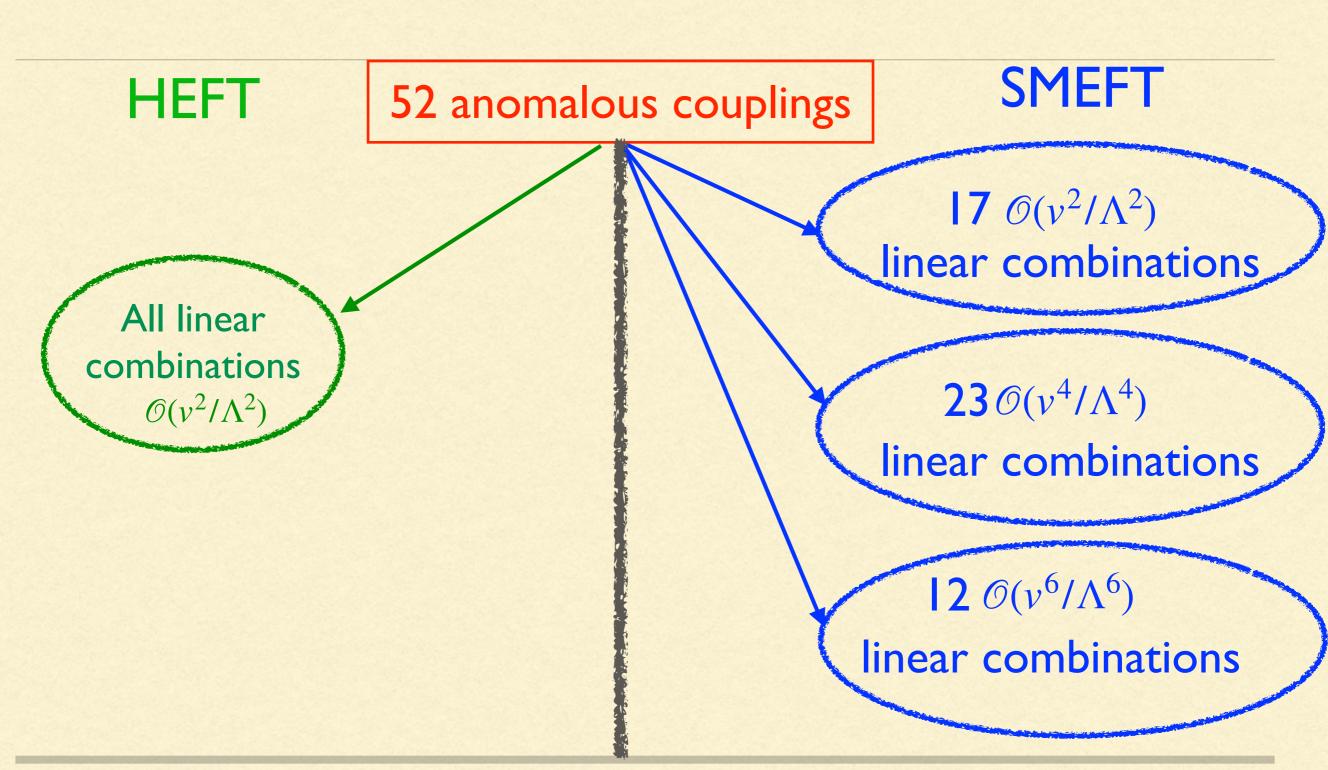
$$\begin{split} \Delta \mathcal{L}_{h} &= \delta g_{VV}^{h} \, h \left[W^{+\,\mu} W_{\mu}^{-} + \frac{1}{2c_{\theta W}^{2}} Z^{\mu} Z_{\mu} \right] + \delta g_{ff}^{h} \, \left(h \bar{f}_{L} f_{R} + h.c. \right) + \delta g_{ZZ}^{h} \, h \frac{Z^{\mu} Z_{\mu}}{2c_{\theta W}^{2}} \\ \sum_{f} g_{Zff}^{h} \, \frac{h}{v} Z_{\mu} \bar{f} \gamma^{\mu} f + g_{WQ}^{h} \, \frac{h}{v} \left(W_{\mu}^{+} \bar{u}_{L} \gamma^{\mu} d_{L} + h.c. \right) + g_{WL}^{h} \, \frac{h}{v} \left(W_{\mu}^{+} \bar{\nu}_{L} \gamma^{\mu} e_{L} + h.c. \right) \\ &+ \kappa_{ZZ}^{h} \, \frac{h}{2v} Z^{\mu\nu} Z_{\mu\nu} + \kappa_{\gamma\gamma}^{h} \, \frac{h}{2v} A^{\mu\nu} A_{\mu\nu} + \kappa_{Z\gamma} \frac{h}{v} A^{\mu\nu} Z_{\mu\nu} + \kappa_{WW}^{h} \, \frac{h}{v} \mathcal{W}^{+\,\mu\nu} \mathcal{W}_{\mu\nu}^{-} \\ &+ \kappa_{GG}^{h} \, \frac{h}{2v} G^{A\,\mu\nu} G_{\mu\nu}^{A} \end{split}$$

hV^3 couplings (5)

$$\begin{split} \Delta \mathcal{L}^{hV^3} &= \mathrm{i} g c_{\theta_W} \frac{h}{v} \left[g_{Z1}^{hV^3} Z_\mu \left(W_\nu^+ \mathcal{W}^{-\mu\nu} - W_\nu^- \mathcal{W}^{+\mu\nu} \right) + \kappa_Z^{hV^3} W_\mu^+ W_\nu^- Z^{\mu\nu} \right] \\ &+ \mathrm{i} e \ \kappa_\gamma^{hV^3} \frac{h}{v} W_\mu^+ W_\nu^- A^{\mu\nu} + g_5^{hV^3} \frac{h}{v} \epsilon^{\mu\nu\rho\sigma} W_\mu^+ \overset{\leftrightarrow}{D}_\rho W_\nu^- Z_\sigma \\ &+ \mathrm{i} g_{\partial hZ}^{hV^3} \frac{g}{2c_{\theta_W}} \frac{\partial_\mu h}{v} Z_\nu \left(W_\mu^+ W^{-\nu} - W_\mu^- W^{+\nu} \right). \end{split}$$

h^2V^2 couplings (8)

$$\begin{split} \Delta \mathcal{L}_{V^2}^{hh} &= \delta g_{VV}^{hh} \, \frac{h^2}{2} \left[W^{+\,\mu} W_{\mu}^- + \frac{1}{2 c_{\theta_W}^2} Z^{\mu} Z_{\mu} \right] + \delta g_{ZZ}^{hh} \, \frac{h^2}{2} \frac{Z^{\mu} Z_{\mu}}{2 c_{\theta_W}^2} \\ &+ g_{Z1}^{hh} \frac{(\partial_{\nu} h)^2}{v^2} + g_{Z2}^{hh} \frac{\partial_{\mu} h \partial_{\nu} h}{2 v^2} \frac{Z^{\mu} Z^{\nu}}{c_{\theta_W}^2} \\ &+ g_{W1}^{hh} \frac{(\partial_{\nu} h)^2}{v^2} W^{+\mu} W_{\mu}^- + g_{W2}^{hh} \frac{\partial_{\mu} h \partial_{\nu} h}{2 v^2} (W^{+\mu} W^{-\nu} + h.c.) \\ &+ \kappa_{WW}^{hh} \, \frac{h^2}{2 v^2} \mathcal{W}^{+\,\mu\nu} \mathcal{W}_{\mu\nu}^- + \kappa_{ZZ}^{hh} \, \frac{h^2}{4 v^2} Z^{\mu\nu} Z_{\mu\nu}. \end{split}$$


h^2G^2 couplings (1)

$$\Delta\mathcal{L}_{GG}^{hh}=\kappa_{GG}^{hh}\,\frac{h^2}{4v^2}G^{A\,\mu\nu}G_{\mu\nu}^A$$

Higgs potential corrections (2)

$$\Delta \mathcal{L}^{h^n} = -\delta \lambda_3 \, vh^3 - \delta \lambda_4 \, \frac{h^4}{4}$$

SMEFT VS HEFT

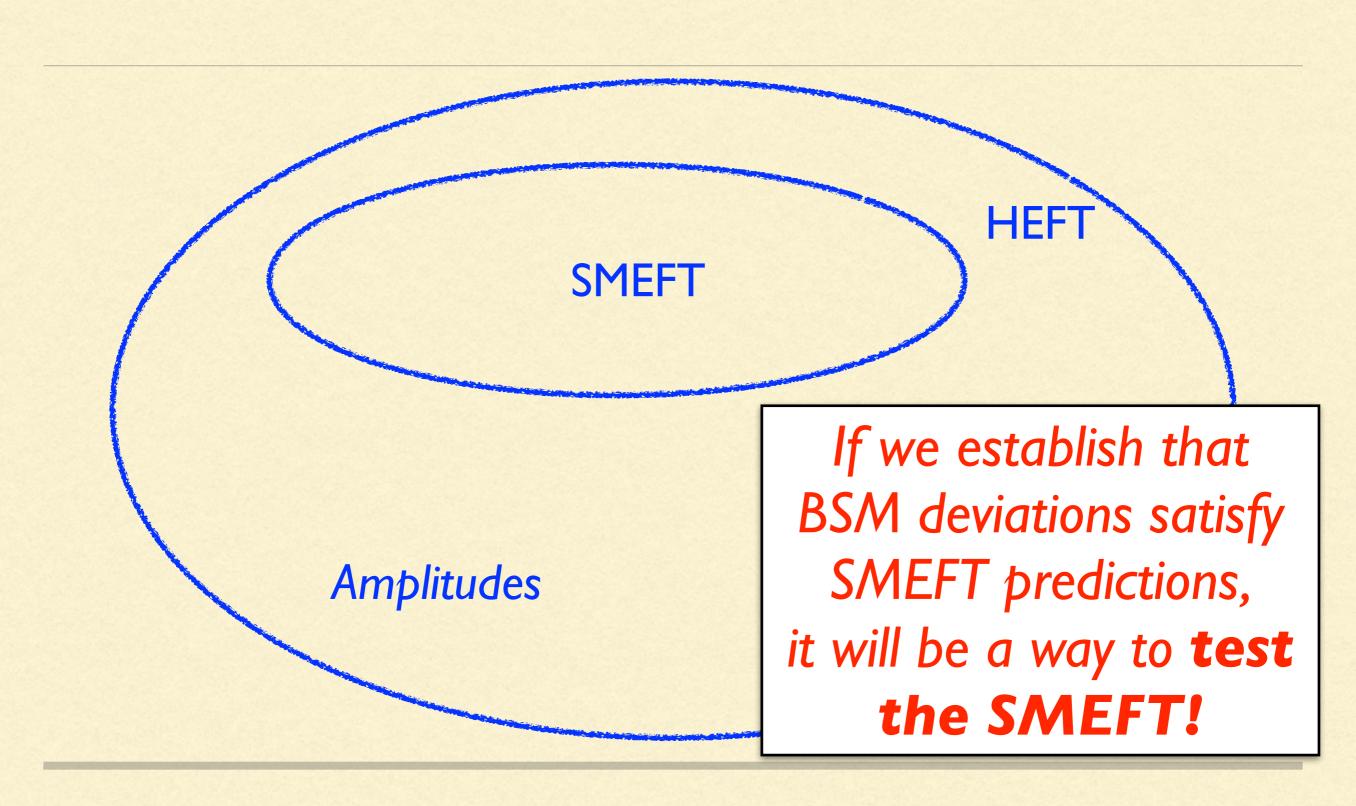
35 LINEAR COMBINATIONS $\leq \mathcal{O}(v^4/\Lambda^4)$

г		
ı		W/Z-decays (2)
ı	$\delta^8 g_Q^W$	$\delta g_Q^W - rac{c_{ heta_W}}{\sqrt{2}} (\delta g_{u_L}^Z - \delta g_{d_L}^Z)$
ı	$\delta^8 g_L^W$	$\delta g_L^W - rac{c_{ heta_W}}{\sqrt{2}} (\delta g_{ u_L}^Z - \delta g_{e_L}^Z)$
ı		TGC (2)
ı	$\delta^8 \kappa^Z$	$\delta \kappa^Z - \delta g_1^Z + t_{ heta_W}^2 \delta \kappa^\gamma$
ı	g_5	New Structure
ı		QGC (5)
ı	$\delta^8 g^Q_{WW1}$	$\delta g^Q_{WW1} - 2c^2_{ heta_W}\delta g^Z_1$
ı	$\delta^8 g_{WW2}^Q$	$\delta g^Q_{WW2} - 2c^2_{ heta_W} \delta g^Z_1$
ı	$\delta^8 g_{ZZ1}^Q$	$\delta g_{ZZ1}^Q - 2\delta g_1^Z$
ı	$\delta^8 g^Q_{ZZ2}$	$\delta g^Q_{ZZ2} - 2\delta g^Z_1$
ı	h^{ZZ}	New Structure
ı		Higgs Production and decay (12)
ı	$\delta^8 g^h_{ZZ}$	$\delta g_{ZZ}^h - (\delta g_1^Z s_{ heta_W}^2 - \delta \kappa^\gamma t_{ heta_W}^2) g^2 v \ \kappa_{WW}^h - \delta \kappa^\gamma - rac{c_{ heta_W}}{s_{ heta_W}} \kappa_{Z\gamma}^h - \kappa_{\gamma\gamma}^h$
ı	$\delta^8 \kappa_{WW}^h$	$\kappa^n_{WW} - \delta \kappa^\gamma - rac{s_{\theta_W}}{s_{\theta_W}} \kappa^n_{Z\gamma} - \kappa^n_{\gamma\gamma}$
ı	$\delta^8 \kappa_{ZZ}^h$	$\kappa_{WW}^h - \delta \kappa^\gamma - \frac{c_{\theta_W}}{s_{\theta_W}} \kappa_{Z\gamma}^h - \kappa_{\gamma\gamma}^h \ \kappa_{ZZ}^h - \frac{1}{c_{\theta_W}^2} \delta \kappa^\gamma - \frac{c_{2\theta_W}}{c_{\theta_W}} \kappa_{Z\gamma}^h - \kappa_{\gamma\gamma}^h$
ı	$\delta^8 g_{WL}^h$	$g_{WL}^h - \sqrt{2}c_{ heta_W}(\delta g_{ u_L}^Z - \delta g_{e_L}^Z - gc_{ heta_W}\delta g_1^Z) + 2\delta g_L^W \delta g_1^Z c_{ heta_W}^2 \ g_{WQ}^h - \sqrt{2}c_{ heta_W}(\delta g_{u_L}^Z - \delta g_{d_L}^Z - gc_{ heta_W}\delta g_1^Z) + 2\delta g_W^W \delta g_1^Z c_{ heta_W}^2 \ g_{WQ}^2 + 2\delta g_W^Z \delta g_1^Z c_{ heta_W}^2 \ g_1^Z c_{ heta_W}$
ı	$\delta^8 g_{WQ}^h$	$g_{WQ}^h - \sqrt{2}c_{ heta_W}(\delta g_{u_L}^Z - \delta g_{d_L}^Z - gc_{ heta_W}\delta g_1^Z) + 2\delta g_Q^W\delta g_1^Zc_{ heta_W}^Z$
ı	$\delta^8 g_{Zf}^h$	$g_{Zf}^h - rac{2g}{c_{ heta_W}} Y_f t_{ heta_W}^2 \delta \kappa^\gamma - 2\delta g_f^Z + rac{2g}{c_{ heta_W}} (T_3^f c_{ heta_W}^2 + Y_f s_{ heta_W}^2) \delta g_1^Z + 2c_{2 heta_W} \delta g_f^Z \delta g_1^Z$
ı		CorrectioNew Structure to Higgs potential (1)
ı	$\delta^8 \lambda_4$	$\delta\lambda_4 - 6\delta\lambda_3 + rac{4}{q^2}\left(rac{\delta g^h_{VV}}{v} + g^2c^2_{ heta_W}\delta g^Z_1 ight)\left(rac{m^2_h}{3v^2} + 3\delta\lambda_3 ight)$
		h^2G^2 coupling (1)
ı	$\delta^8 \kappa_{GG}^{hh}$	$\kappa^{hh}_{GG} - \kappa^h_{GG} + rac{\kappa^h_{GG}}{2} lpha_r$
ı		h^2V^2 couplings (8)
ı	$\delta^8 \kappa_{WW}^{hh}$	$\kappa_{WW}^{hh} - \delta \kappa^{\gamma} - rac{c_{ heta_W}}{s_{ heta_W}} \kappa_{Z\gamma}^h - \kappa_{\gamma\gamma}^h + rac{\kappa_{WW}^h}{2} lpha_r$
ı	$\delta^8 \kappa_{ZZ}^{hh}$	$\kappa_{ZZ}^{hh} - rac{1}{c_{ heta_{HJ}}^2} \delta \kappa^{\gamma} - rac{c_{2 heta_W}}{c_{ heta_W} s_{ heta_W}} \kappa_{Z\gamma}^h - \kappa_{\gamma\gamma}^h + rac{\kappa_{ZZ}^h}{2} lpha_r$
L	$\delta^8 g_{VV}^{hh}$	$\delta g_{VV}^{hh} - rac{4\delta g_{VV}^h}{v} + g^2 \delta g_1^Z c_{ heta_W}^2 + rac{\delta g_{VV}^h}{2v} lpha_r + 4 \left(g^2 \kappa_{WW}^h + 2 rac{\delta g_{VV}^h}{v} ight) \delta g_1^Z c_{ heta_W}^2$
ı	$\delta^8 g_{ZZ}^{hh}$	$ \delta g_{ZZ}^{hh} - 5(\delta g_1^Z s_{\theta_W}^2 - \delta \kappa^{\gamma} t_{\theta_W}^2) g^2 + \frac{\delta g_{ZZ}^h}{2v} \alpha_r + 4(\kappa_{Z\gamma}^h s_{2\theta_W} + \kappa_{ZZ}^h c_{2\theta_W} - \kappa_{WW}^h) g^2 \delta g_1^Z $
ı	g_{W1}^{hh}	New Structure
ı	g_{W2}^{hh}	New Structure
ı	g_{Z1}^{hh}	New Structure
ı	g_{Z2}^{hh}	New Structure
ı		hV^3 couplings (5)
	$\delta^8 g_{Z1}^{hV^3}$	$g_{Z1}^{hV^3} + rac{2}{c_{ heta W}^2} \left(rac{\kappa_{Z\gamma}^h}{t_{ heta W}} + \delta \kappa^\gamma + \kappa_{\gamma\gamma}^h ight) + 4 \left(rac{c_{2 heta W}}{2c_{ heta W}^2} + 1 ight) (\delta g_1^Z)^2 c_{ heta W}^2$
	$\delta^8 \kappa_\gamma^{hV^3}$	$\kappa_{\gamma}^{hV^3} + rac{2}{t_{ heta_W}} \kappa_{Z\gamma}^h + 2 \kappa_{\gamma\gamma}^h + 4 \delta \kappa^{\gamma} \delta g_1^Z c_{ heta_W}^2$
	$\delta^8 \kappa_Z^{hV^3}$	$\kappa_Z^{hV^3} + \frac{2}{c_{\theta_W}^2} \delta \kappa_\gamma + \frac{2}{t_{\theta_W}} \kappa_{Z\gamma}^h + 2\kappa_{\gamma\gamma}^h + 4\left(\left(\frac{c_{2\theta_W}}{2c_{\theta_W}^2} + 1\right) \delta \kappa^Z + t_{\theta_W}^2 \delta \kappa^\gamma\right) \delta g_1^Z c_{\theta_W}^2$
	$\delta^8 g_{\partial hZ}^{hV^3}$	$g_{\partial hZ}^{hV^3} + 4(\delta\kappa^Z c_{2 heta_W} + 2\delta\kappa^\gamma s_{ heta_W}^2 - \delta g_1^Z c_{ heta_W}^2)\delta g_1^Z c_{ heta_W}^2$
	$g_5^{hV^3}$	New Structure

35 LINEAR COMBINATIONS=0

	W/Z-decays (2)
$\delta^8 g_Q^W$	$\delta g_Q^W - rac{c_{ heta_W}}{\sqrt{2}} (\delta g_{u_L}^Z - \delta g_{d_L}^Z)$
$\delta^8 g_L^W$	$\delta g_L^W - rac{c_{ heta_W}}{\sqrt{2}} (\delta g_{ u_L}^Z - \delta g_{e_L}^Z)$
	TGC (2)
$\delta^8 \kappa^Z$	$\delta \kappa^Z - \delta g_1^Z + t_{ heta_W}^2 \delta \kappa^\gamma$
g_5	New Structure
	QGC (5)
$\delta^8 g^Q_{WW1}$	$\delta g^Q_{WW1} - 2c^2_{ heta_W} \delta g^Z_1$
$\delta^8 g_{WW2}^{Q}$	$\delta g_{WW2}^{Q} - 2c_{ heta_W}^2 \delta g_1^Z$
$\delta^8 g^Q_{ZZ1}$	$\delta g_{ZZ1}^Q - 2\delta g_1^Z$
$\delta^8 g_{ZZ2}^{Q}$	$\delta g_{ZZ2}^{Q} - 2\delta g_1^Z$
h^{ZZ}	New Structure
	Higgs Production and decay (12)
$\delta^8 g^h_{ZZ}$	$\delta g_{ZZ}^h - (\delta g_1^Z s_{\theta_W}^2 - \delta \kappa^\gamma t_{\theta_W}^2) g^2 v$
$\delta^8 \kappa_{WW}^h$	$\kappa_{WW}^h - \delta \kappa^\gamma - \frac{c_{\theta_W}}{s_{\theta}} \kappa_{Z\gamma}^h - \kappa_{\gamma\gamma}^h$
$\delta^8 \kappa_{ZZ}^h$	$\frac{\delta g_{ZZ}^h - (\delta g_1^Z s_{\theta_W}^2 - \delta \kappa^\gamma t_{\theta_W}^2) g^2 v}{\kappa_{WW}^h - \delta \kappa^\gamma - \frac{c_{\theta_W}}{s_{\theta_W}} \kappa_{Z\gamma}^h - \kappa_{\gamma\gamma}^h} \\ \kappa_{ZZ}^h - \frac{1}{c_{\theta_W}^2} \delta \kappa^\gamma - \frac{c_{2\theta_W}}{c_{\theta_W} s_{\theta_W}} \kappa_{Z\gamma}^h - \kappa_{\gamma\gamma}^h$
$\delta^8 g_{WL}^h$	$a^h = \sqrt{2}c_0 (\delta a^Z - \delta a^Z - ac_0 \delta a^Z) + 2\delta a^W \delta a^Z c^2$
$\delta^8 g_{WO}^h$	$g_{WO}^h - \sqrt{2}c_{\theta_W}(\delta g_{u_I}^Z - \delta g_{d_I}^Z - gc_{\theta_W}\delta g_1^Z) + 2\delta g_O^W \delta g_1^Z c_{\theta_W}^Z$
$\delta^8 g_{Zf}^h$	$g_{WQ}^{h} - \sqrt{2}c_{\theta_{W}}(\delta g_{\nu_{L}}^{Z} - \delta g_{e_{L}}^{Z} - gc_{\theta_{W}}\delta g_{1}^{Z}) + 2\delta g_{L}^{Z}\delta g_{1}^{Y}c_{\theta_{W}}}$ $g_{WQ}^{h} - \sqrt{2}c_{\theta_{W}}(\delta g_{u_{L}}^{Z} - \delta g_{d_{L}}^{Z} - gc_{\theta_{W}}\delta g_{1}^{Z}) + 2\delta g_{Q}^{W}\delta g_{1}^{Z}c_{\theta_{W}}^{2}}$ $g_{Zf}^{h} - \frac{2g}{c_{\theta_{W}}}Y_{f}t_{\theta_{W}}^{2}\delta\kappa^{\gamma} - 2\delta g_{f}^{Z} + \frac{2g}{c_{\theta_{W}}}(T_{3}^{f}c_{\theta_{W}}^{2} + Y_{f}s_{\theta_{W}}^{2})\delta g_{1}^{Z} + 2c_{2\theta_{W}}\delta g_{f}^{Z}\delta g_{1}^{Z}$
227	CorrectioNew Structure to Higgs potential (1)
$\delta^8 \lambda_4$	$\delta \lambda_4 - 6\delta \lambda_3 + rac{4}{g^2} \left(rac{\delta g^h_{VV}}{y} + g^2 c^2_{ heta_W} \delta g^Z_1 ight) \left(rac{m^2_h}{3v^2} + 3\delta \lambda_3 ight)$
	h^2G^2 coupling (1)
$\delta^8 \kappa_{GG}^{hh}$	$\kappa^{hh}_{GG} - \kappa^h_{GG} + rac{\kappa^h_{GG}}{2} lpha_r$
	h^2V^2 couplings (8)
$\delta^8 \kappa_{WW}^{hh}$	$\kappa_{WW}^{hh} - \delta \kappa^{\gamma} - rac{c_{ heta_W}}{s_{ heta_W}} \kappa_{Z\gamma}^h - \kappa_{\gamma\gamma}^h + rac{\kappa_{WW}^h}{2} lpha_r$
$\delta^8 \kappa_{ZZ}^{hh}$	$\kappa_{ZZ}^{hh} - rac{1}{c_{ heta_W}^2} \delta \kappa^\gamma - rac{c_{2 heta_W}}{c_{ heta_W}} \kappa_{Z\gamma}^h - \kappa_{\gamma\gamma}^h + rac{\kappa_{ZZ}^h}{2} lpha_r$
$\delta^8 g_{VV}^{hh}$	$\delta g_{VV}^{hh} - \frac{4\delta g_{VV}^{h}}{v} + g^2 \delta g_1^Z c_{\theta_W}^2 + \frac{\delta g_{VV}^{h}}{2v} \alpha_r + 4 \left(g^2 \kappa_{WW}^h + 2 \frac{\delta g_{VV}^h}{v} \right) \delta g_1^Z c_{\theta_W}^2$
$\delta^8 g_{ZZ}^{hh}$	$ \left \begin{array}{l} \delta g_{ZZ}^{hh} - 5(\delta g_1^Z s_{\theta_W}^2 - \delta \kappa^\gamma t_{\theta_W}^2) g^2 + \frac{\delta g_{ZZ}^h}{2v} \alpha_r + 4(\kappa_{Z\gamma}^h s_{2\theta_W} + \kappa_{ZZ}^h c_{2\theta_W} - \kappa_{WW}^h) g^2 \delta g_1^Z \end{array} \right $
g_{W1}^{hh}	New Structure
g_{W2}^{hh}	New Structure
g_{Z1}^{hh}	New Structure
g_{Z2}^{hh}	New Structure
	hV^3 couplings (5)
$\delta^8 g_{Z1}^{hV^3}$	$g_{Z1}^{hV^3} + rac{2}{c_{ heta_W}^2} \left(rac{\kappa_{Z\gamma}^h}{t_{ heta_W}} + \delta\kappa^\gamma + \kappa_{\gamma\gamma}^h ight) + 4\left(rac{c_{2 heta_W}}{2c_{ heta_W}^2} + 1 ight) (\delta g_1^Z)^2 c_{ heta_W}^2$
$\delta^8 \kappa_\gamma^{hV^3}$	$\kappa_{\gamma}^{h\dot{V}^3}+rac{2}{t_{ heta_W}}\kappa_{Z\gamma}^h+2\kappa_{\gamma\gamma}^h+4\delta\kappa^{\gamma}\delta g_1^Zc_{ heta_W}^2$
$\delta^8 \kappa_Z^{hV^3}$	$\kappa_Z^{hV^3} + rac{2}{c_{ heta_W}^2} \delta \kappa_\gamma + rac{2}{t_{ heta_W}} \kappa_{Z\gamma}^h + 2 \kappa_{\gamma\gamma}^h + 4 \left(\left(rac{c_{2 heta_W}}{2c_{ heta_W}^2} + 1 ight) \delta \kappa^Z + t_{ heta_W}^2 \delta \kappa^\gamma ight) \delta g_1^Z c_{ heta_W}^2$
$\delta^8 g_{\partial hZ}^{hV^3}$	$g_{\partial hZ}^{hV^3} + 4(\delta\kappa^Z c_{2 heta_W} + 2\delta\kappa^\gamma s_{ heta_W}^2 - \delta g_1^Z c_{ heta_W}^2)\delta g_1^Z c_{ heta_W}^2$
$g_5^{hV^3}$	New Structure

at $\mathcal{O}(v^2/\Lambda^2)$


D6 level SMEFT predictions!

12 LINEAR COMBINATIONS $\leq \mathcal{O}(v^6/\Lambda^6)$

$$\begin{split} & \delta^8 \kappa_{WW} - c_{\theta_W}^2 \delta^8 \kappa_{ZZ} - 2 c_{\theta_W}^2 \delta^8 \kappa_{Z} \\ & \delta^8 g_{Wud}^h - \frac{c_{\theta_W} (\delta^8 g_{Zu_l}^h - \delta^8 g_{Zd_l}^h)}{\sqrt{2}} - (4 \delta^8 g_{ud}^W - \sqrt{2} g c_{\theta_W}^2 \delta^8 \kappa_{Z}) \\ & \delta^8 g_{W\nu e}^h - \frac{c_{\theta_W} (\delta^8 g_{Z\nu_l}^h - \delta^8 g_{Ze_l}^h)}{\sqrt{2}} - (4 \delta^8 g_{\nu e}^W - \sqrt{2} g c_{\theta_W}^2 \delta^8 \kappa_{Z}) \end{split}$$

$$\begin{split} &\delta^8 g_{Q2}^{WW} - \delta^8 g_{Q1}^{WW} - 2c_{\theta_W}^4 (\delta^8 g_{Q2}^{ZZ} - \delta^8 g_{Q1}^{ZZ}) \\ &h_Q^{ZZ} + c_{\theta_W}^4 (\delta^8 g_{Q2}^{ZZ} - \delta^8 g_{Q1}^{ZZ}) \\ &g_{hh2}^{Z} - 4 (\delta^8 g_{Q1}^{WW} - 2c_{\theta_W}^2 \delta^8 \kappa_Z) \\ &g_{hh3}^{Z} + 4 (\delta^8 g_{Q1}^{WW} - 2c_{\theta_W}^2 \delta^8 \kappa_Z + c_{\theta_W}^4 (\delta^8 g_{Q2}^{ZZ} - \delta^8 g_{Q1}^{ZZ})) \\ &g_{hh2}^{W} + 4 (\delta^8 g_{Q1}^{WW} - 2c_{\theta_W}^2 \delta^8 \kappa_Z + c_{\theta_W}^4 (\delta^8 g_{Q2}^{ZZ} - \delta^8 g_{Q1}^{ZZ})) \\ &g_{hh3}^{W} + 4 c_{\theta_W}^4 \delta^8 g_{Q2}^{ZZ} \\ &\delta^8 \kappa^{hZ} - \frac{1}{3} \left(\frac{9\delta^8 g_{VV}^h / v - \delta^8 g_{ZZ}^{h^2}}{g^2} + 3\delta^8 g_{1}^{hZ} - 3t_{\theta_W}^2 (2\delta^8 g_{Q1}^{WW} + \delta^8 \kappa_W^h + g^{\partial hZ}) \right) \\ &+ 6\delta^8 \kappa_Z + s_{\theta_W}^2 (32\delta^8 \kappa_Z + 15\delta^8 \kappa_{ZZ} + 6\delta^8 g_{ZZ}^{Q1} c_{\theta_W}^2) \\ &\delta^8 \kappa^{h\gamma} + \frac{1}{3s_{\theta_W}^2} \left(\frac{9\delta^8 g_{VV}^h / v - \delta^8 g_{ZZ}^{h^2}}{g^2} c_{\theta_W}^2 + 3\delta^8 g_{1}^{hZ} - 3s_{\theta_W}^2 (2\delta^8 g_{Q1}^{WW} + \delta^8 \kappa_W^h + g^{\partial hZ}) \right) \\ &- 6\delta^8 \kappa_Z c_{\theta_W}^4 + s_{\theta_W}^2 c_{\theta_W}^2 (26\delta^8 \kappa_Z + 15\delta^8 \kappa_{ZZ} + 6\delta^8 g_{ZZ}^{Q1} c_{\theta_W}^2) \right) \end{split}$$

PROBING SMEFT VS TESTING SMEFT

PROBING SMEFT

Only 17 of these 52 anomalous couplings need to be measured

All other anomalous couplings can be predicted as a function of these 17

List of Anomalous Couplings

Vff couplings (9)

$$\Delta \mathcal{L}_{Vff} = \sum_{f} \delta g_f^Z Z_\mu \bar{f} \gamma^\mu f_{L,R} + \delta g_{e\nu}^W (W_\mu^+ \bar{\nu}_L \gamma^\mu e_L + h.c.) + \delta g_{ud}^W (W_\mu^+ \bar{u}_L \gamma^\mu d_L + h.c.)$$

Anomalous TGC (4)

$$\Delta \mathcal{L}_{TGC} = \mathrm{i} g c_{\theta_W} \left[\delta g_1^Z Z_\mu \left(W_\nu^+ \mathcal{W}^{-\mu\nu} - W_\nu^- \mathcal{W}^{+\mu\nu} \right) + \delta \kappa^Z W_\mu^+ W_\nu^- Z^{\mu\nu} \right]$$

$$+ \mathrm{i} e \ \delta \kappa^\gamma W_\mu^+ W_\nu^- A^{\mu\nu} + g_5 \epsilon^{\mu\nu\rho\sigma} W_\mu^+ D_\rho W_\nu^- Z_\sigma$$

Anomalous QGC (5)

$$\begin{split} \Delta \mathcal{L}_{QGC} &= g^2 c_{\theta_W}^2 \left[\delta g_{ZZ1}^Q Z^\mu Z^\nu W_\mu^- W_\nu^+ - \delta g_{ZZ2}^Q Z^\mu Z_\mu W^{-\nu} W_\nu^+ \right] + \frac{g^2}{4 c_{\theta_W}^4} h_{ZZ}^Q (Z^\mu Z_\mu)^2 \\ &\quad + \frac{g^2}{2} \left[\delta g_{WW1}^Q W^{-\mu} W^{+\nu} W_\mu^- W_\nu^+ - \delta g_{WW2}^Q \left(W^{-\mu} W_\mu^+ \right)^2 \right] \end{split}$$

Single Higgs (19)

$$\begin{split} \Delta \mathcal{L}_{h} &= \delta g_{VV}^{h} \, h \left[W^{+\,\mu} W_{\mu}^{-} + \frac{1}{2c_{\theta W}^{2}} Z^{\mu} Z_{\mu} \right] + \delta g_{ff}^{h} \, \left(h \bar{f}_{L} f_{R} + h.c. \right) + \delta g_{ZZ}^{h} \, h \frac{Z^{\mu} Z_{\mu}}{2c_{\theta W}^{2}} \\ \sum_{f} g_{Zff}^{h} \, \frac{h}{v} Z_{\mu} \bar{f} \gamma^{\mu} f + g_{WQ}^{h} \, \frac{h}{v} \left(W_{\mu}^{+} \bar{u}_{L} \gamma^{\mu} d_{L} + h.c. \right) + g_{WL}^{h} \, \frac{h}{v} \left(W_{\mu}^{+} \bar{\nu}_{L} \gamma^{\mu} e_{L} + h.c. \right) \\ + \kappa_{ZZ}^{h} \, \frac{h}{2v} Z^{\mu\nu} Z_{\mu\nu} + \kappa_{\gamma\gamma}^{h} \, \frac{h}{2v} A^{\mu\nu} A_{\mu\nu} + \kappa_{Z\gamma} \frac{h}{v} A^{\mu\nu} Z_{\mu\nu} + \kappa_{WW}^{h} \, \frac{h}{v} \mathcal{W}^{+\,\mu\nu} \mathcal{W}_{\mu\nu}^{-} \\ + \kappa_{GG}^{h} \, \frac{h}{2v} G^{A\,\mu\nu} G_{\mu\nu}^{A} \end{split}$$

hV^3 couplings (5)

$$\begin{split} \Delta \mathcal{L}^{hV^3} &= \mathrm{i} g c_{\theta_W} \frac{h}{v} \left[g_{Z1}^{hV^3} Z_{\mu} \left(W_{\nu}^+ \mathcal{W}^{-\mu\nu} - W_{\nu}^- \mathcal{W}^{+\mu\nu} \right) + \kappa_Z^{hV^3} W_{\mu}^+ W_{\nu}^- Z^{\mu\nu} \right] \\ &+ \mathrm{i} e \; \kappa_{\gamma}^{hV^3} \frac{h}{v} W_{\mu}^+ W_{\nu}^- A^{\mu\nu} + g_5^{hV^3} \frac{h}{v} \epsilon^{\mu\nu\rho\sigma} W_{\mu}^+ \overset{\leftrightarrow}{D}_{\rho} W_{\nu}^- Z_{\sigma} \\ &+ \mathrm{i} g_{\partial hZ}^{hV^3} \frac{g}{2c_{\theta_W}} \frac{\partial_{\mu} h}{v} Z_{\nu} \left(W_{\mu}^+ W^{-\nu} - W_{\mu}^- W^{+\nu} \right). \end{split}$$

h^2V^2 couplings (8)

$$\begin{split} \Delta \mathcal{L}_{V^2}^{hh} &= \delta g_{VV}^{hh} \, \frac{h^2}{2} \left[W^{+\,\mu} W_{\mu}^- + \frac{1}{2 c_{\theta_W}^2} Z^{\mu} Z_{\mu} \right] + \delta g_{ZZ}^{hh} \, \frac{h^2}{2} \, \frac{Z^{\mu} Z_{\mu}}{2 c_{\theta_W}^2} \\ &+ g_{Z1}^{hh} \frac{(\partial_{\nu} h)^2}{v^2} + g_{Z2}^{hh} \frac{\partial_{\mu} h \partial_{\nu} h}{2 v^2} \, \frac{Z^{\mu} Z^{\nu}}{c_{\theta_W}^2} \\ &+ g_{W1}^{hh} \frac{(\partial_{\nu} h)^2}{v^2} W^{+\mu} W_{\mu}^- + g_{W2}^{hh} \frac{\partial_{\mu} h \partial_{\nu} h}{2 v^2} (W^{+\mu} W^{-\nu} + h.c.) \\ &+ \kappa_{WW}^{hh} \, \frac{h^2}{2 v^2} W^{+\mu\nu} W_{\mu\nu}^- + \kappa_{ZZ}^{hh} \, \frac{h^2}{4 v^2} Z^{\mu\nu} Z_{\mu\nu}. \end{split}$$

h^2G^2 couplings (1)

$$\Delta \mathcal{L}_{GG}^{hh} = \kappa_{GG}^{hh} \frac{h^2}{4v^2} G^{A\mu\nu} G_{\mu\nu}^A$$

Higgs potential corrections (2)

$$\Delta \mathcal{L}^{h^n} = -\delta \lambda_3 \, v h^3 - \delta \lambda_4 \, \frac{h^4}{4}$$

RSG, Pomarol & Riva (2014)

TESTING SMEFT

- I. Beyond D6 SMEFT
- 2. SMEFT at D8,D10.. level/HEFT
- 3. Testing SMEFT assumptions

All these 52 anomalous couplings need to be probed

List of Anomalous Couplings

Vff couplings (9)

$$\Delta\mathcal{L}_{Vff} = \sum_f \delta g_f^Z Z_\mu \bar{f} \gamma^\mu f_{L,R} + \delta g_{e\nu}^W (W_\mu^+ \bar{\nu}_L \gamma^\mu e_L + h.c.) + \delta g_{ud}^W (W_\mu^+ \bar{u}_L \gamma^\mu d_L + h.c.)$$

Anomalous TGC (4)

$$\Delta \mathcal{L}_{TGC} = igc_{\theta_W} \left[\delta g_1^Z Z_\mu \left(W_\nu^+ \mathcal{W}^{-\mu\nu} - W_\nu^- \mathcal{W}^{+\mu\nu} \right) + \delta \kappa^Z W_\mu^+ W_\nu^- Z^{\mu\nu} \right]$$

$$+ ie \ \delta \kappa^\gamma W_\mu^+ W_\nu^- A^{\mu\nu} + g_5 \epsilon^{\mu\nu\rho\sigma} W_\mu^+ D_\rho^- W_\nu^- Z_\sigma$$

Anomalous QGC (5)

$$\begin{split} \Delta \mathcal{L}_{QGC} &= g^2 c_{\theta_W}^2 \left[\delta g_{ZZ1}^Q Z^\mu Z^\nu W_\mu^- W_\nu^+ - \delta g_{ZZ2}^Q Z^\mu Z_\mu W^{-\nu} W_\nu^+ \right] + \frac{g^2}{4 c_{\theta_W}^4} h_{ZZ}^Q (Z^\mu Z_\mu)^2 \\ &\quad + \frac{g^2}{2} \left[\delta g_{WW1}^Q W^{-\mu} W^{+\nu} W_\mu^- W_\nu^+ - \delta g_{WW2}^Q \left(W^{-\mu} W_\mu^+ \right)^2 \right] \end{split}$$

Single Higgs (19)

$$\begin{split} \Delta \mathcal{L}_{h} &= \delta g_{VV}^{h} \, h \left[W^{+\,\mu} W_{\mu}^{-} + \frac{1}{2c_{\theta_{W}}^{2}} Z^{\mu} Z_{\mu} \right] + \delta g_{ff}^{h} \, \left(h \bar{f}_{L} f_{R} + h.c. \right) + \delta g_{ZZ}^{h} \, h \frac{Z^{\mu} Z_{\mu}}{2c_{\theta_{W}}^{2}} \\ \sum_{f} g_{Zff}^{h} \, \frac{h}{v} Z_{\mu} \bar{f} \gamma^{\mu} f + g_{WQ}^{h} \, \frac{h}{v} \left(W_{\mu}^{+} \bar{u}_{L} \gamma^{\mu} d_{L} + h.c. \right) + g_{WL}^{h} \, \frac{h}{v} \left(W_{\mu}^{+} \bar{\nu}_{L} \gamma^{\mu} e_{L} + h.c. \right) \\ + \kappa_{ZZ}^{h} \, \frac{h}{2v} Z^{\mu\nu} Z_{\mu\nu} + \kappa_{\gamma\gamma}^{h} \, \frac{h}{2v} A^{\mu\nu} A_{\mu\nu} + \kappa_{Z\gamma} \frac{h}{v} A^{\mu\nu} Z_{\mu\nu} + \kappa_{WW}^{h} \, \frac{h}{v} \mathcal{W}^{+\,\mu\nu} \mathcal{W}_{\mu\nu}^{-} \\ + \kappa_{GG}^{h} \, \frac{h}{2v} G^{A\,\mu\nu} G_{\mu\nu}^{A} \end{split}$$

hV^3 couplings (5)

$$\begin{split} \Delta \mathcal{L}^{hV^3} &= \mathrm{i} g c_{\theta_W} \frac{h}{v} \left[g_{Z1}^{hV^3} Z_{\mu} \left(W_{\nu}^+ \mathcal{W}^{-\mu\nu} - W_{\nu}^- \mathcal{W}^{+\mu\nu} \right) + \kappa_Z^{hV^3} W_{\mu}^+ W_{\nu}^- Z^{\mu\nu} \right] \\ &+ \mathrm{i} e \; \kappa_{\gamma}^{hV^3} \frac{h}{v} W_{\mu}^+ W_{\nu}^- A^{\mu\nu} + g_5^{hV^3} \frac{h}{v} \epsilon^{\mu\nu\rho\sigma} W_{\mu}^+ \overset{\leftrightarrow}{D}_{\rho} W_{\nu}^- Z_{\sigma} \\ &+ \mathrm{i} g_{\partial hZ}^{hV^3} \frac{g}{2c_{\theta_W}} \frac{\partial_{\mu} h}{v} Z_{\nu} \left(W_{\mu}^+ W^{-\nu} - W_{\mu}^- W^{+\nu} \right). \end{split}$$

h^2V^2 couplings (8)

$$\begin{split} \Delta \mathcal{L}_{V^2}^{hh} &= \delta g_{VV}^{hh} \, \frac{h^2}{2} \left[W^{+\,\mu} W_{\mu}^{-} + \frac{1}{2 c_{\theta_W}^2} Z^{\mu} Z_{\mu} \right] + \delta g_{ZZ}^{hh} \, \frac{h^2}{2} \, \frac{Z^{\mu} Z_{\mu}}{2 c_{\theta_W}^2} \\ &+ g_{Z1}^{hh} \frac{(\partial_{\nu} h)^2}{v^2} + g_{Z2}^{hh} \frac{\partial_{\mu} h \partial_{\nu} h}{2 v^2} \, \frac{Z^{\mu} Z^{\nu}}{c_{\theta_W}^2} \\ &+ g_{W1}^{hh} \frac{(\partial_{\nu} h)^2}{v^2} W^{+\mu} W_{\mu}^{-} + g_{W2}^{hh} \frac{\partial_{\mu} h \partial_{\nu} h}{2 v^2} (W^{+\mu} W^{-\nu} + h.c.) \\ &+ \kappa_{WW}^{hh} \, \frac{h^2}{2 v^2} \mathcal{W}^{+\,\mu\nu} \mathcal{W}_{\mu\nu}^{-} + \kappa_{ZZ}^{hh} \, \frac{h^2}{4 v^2} Z^{\mu\nu} Z_{\mu\nu}. \end{split}$$

h^2G^2 couplings (1)

$$\Delta \mathcal{L}_{GG}^{hh} = \kappa_{GG}^{hh} \, \frac{h^2}{4v^2} G^{A\,\mu\nu} G_{\mu\nu}^A$$

Higgs potential corrections (2)

$$\Delta \mathcal{L}^{h^n} = -\delta \lambda_3 \, v h^3 - \delta \lambda_4 \, \frac{h^4}{4}$$

Bertuzzo, Grojean & RSG (in prep)

TESTING

List of Anomalous Couplings Vff couplings (9) $\Delta \mathcal{L}_{Vff} = \sum_{f} \delta g_f^Z Z_{\mu} \bar{f} \gamma^{\mu} f_{L,R} + \delta g_{e\nu}^W (W_{\mu}^+ \bar{\nu}_L \gamma^{\mu} e_L + h.c.) + \delta g_{ud}^W (W_{\mu}^+ \bar{u}_L \gamma^{\mu} d_L + h.c.)$ Anomalous TGC (4) $\Delta \mathcal{L}_{TGC} = igc_{\theta_W} \left[\delta g_1^Z Z_\mu \left(W_\nu^+ W^{-\mu\nu} - W_\nu^- W^{+\mu\nu} \right) + \delta \kappa^Z W_\mu^+ W_\nu^- Z^{\mu\nu} \right]$ +ie $\delta \kappa^{\gamma} W_{\mu}^{+} W_{\nu}^{-} A^{\mu\nu} + g_5 \epsilon^{\mu\nu\rho\sigma} W_{\mu}^{+} \overrightarrow{D}_{\rho} W_{\nu}^{-} Z_{\sigma}$

- Thus to go from probing to testing SMEFT many more measurements are required.
- I. Beyo
- 3. Testir
- 2. SMEF This motivates the development of sophisticated differential observables, wrt energies, angles/Multivariate distributions/Machine learning

• High energies/high luminosities required for such studies

couplings need to be probed

$$\Delta \mathcal{L}_{V2}^{h2} = \delta g_{VV}^{h2} \stackrel{!}{=} \begin{bmatrix} W^{+\mu}W_{\mu} + \frac{1}{2c_{\theta}^{2}}Z^{\mu}Z_{\mu} \end{bmatrix} + \delta g_{ZZ}^{\mu} \stackrel{!}{=} \frac{1}{2c_{\theta}^{2}W} \\ + g_{Z1}^{hh} \frac{(\partial_{\nu}h)^{2}}{v^{2}} + g_{Z2}^{hh} \frac{\partial_{\mu}h\partial_{\nu}h}{2v^{2}} \frac{Z^{\mu}Z^{\nu}}{c_{\theta}^{2}W} \\ + g_{W1}^{hh} \frac{(\partial_{\nu}h)^{2}}{v^{2}} W^{+\mu}W_{\mu}^{-} + g_{W2}^{hh} \frac{\partial_{\mu}h\partial_{\nu}h}{2v^{2}} (W^{+\mu}W^{-\nu} + h.c.) \\ + \kappa_{WW}^{hh} \frac{h^{2}}{2v^{2}} W^{+\mu\nu}W_{\mu\nu}^{-} + \kappa_{ZZ}^{hh} \frac{h^{2}}{4v^{2}} Z^{\mu\nu}Z_{\mu\nu}.$$

$$h^{2}G^{2} \text{ couplings (1)}$$

$$\Delta \mathcal{L}_{GG}^{hh} = \kappa_{GG}^{hh} \frac{h^{2}}{4v^{2}} G^{A\mu\nu}G_{\mu\nu}^{A}$$

$$\text{Higgs potential corrections (2)}$$

$$\Delta \mathcal{L}^{h^{n}} = -\delta \lambda_{3} vh^{3} - \delta \lambda_{4} \frac{h^{4}}{4}$$

Bertuzzo, Grojean & RSG (in prep)

BEYOND SMEFT 2: AMPLITUDES

- Basic idea: one can try to find most general Lorentz invariant parameterisation of an amplitude for a process.
- There is a mapping between EFT Wilson coefficients and the parameters determining the amplitudes.
- No of parameters must equal no of Wilson coefficients.
- Amplitudes much more physical. No redundancies in amplitude parametrisation unlike Wilson coefficients.

BEYOND SMEFT 2: AMPLITUDES

- Many recent papers with similar objectives:
 - I. Shadmi & Weiss (2018)
 - 2. Durieux, Kitahara, Shadmi & Weiss (2019)
 - 3. Durieux, Kitahara, Machado, Shadmi & Weiss (2020)
 - 5. Ma, Shu & Xiao (2019)
 - 6. Baratella, Fernandez & Pomarol (2020)
 - 8. Jiang, Ma & Shu (2020)
 - in this talk

We will focus on this recent work

- 9. Dong, Ma, Shu & Zhou (2022)
- 10. Chang, Chen, Liu and Luty (2022)

AMPLITUDES EXAMPLE: HIGGSTRAHLUNG

As an example take the most general amplitude for Higgstrahlung:

$$\mathcal{M}(f_1\bar{f}_2 \to Z_3h_4) = \bar{u}_2\Gamma^{\mu}u_1\epsilon_{3\mu}^*$$

$$\begin{split} \Gamma^{\mu} = & c_{1}p_{1}^{\mu} + c_{2}p_{2}^{\mu} + c_{3}p_{1}^{\mu}\gamma_{5} + c_{4}p_{2}^{\mu}\gamma_{5} + c_{5}\gamma^{\mu} + c_{6}p_{1}^{\mu}p_{3} + c_{7}p_{2}^{\mu}p_{3} \\ & + c_{8}\gamma^{\mu}\gamma_{5} + c_{9}p_{1}^{\mu}p_{3}\gamma_{5} + c_{10}p_{2}^{\mu}p_{3}\gamma_{5} + c_{11}\gamma^{\mu\nu}p_{3\nu} \\ & + \epsilon^{\mu\nu\rho\sigma}p_{1\nu}p_{2\rho}p_{3\sigma}\left(c_{12} + c_{13}\gamma_{5} + c_{14}p_{3}\right) + \epsilon^{\mu\nu\rho\sigma}\gamma_{\nu}\left(c_{15}p_{1\rho}p_{2\sigma} + c_{16}p_{1\rho}p_{3\sigma} + c_{17}p_{2\rho}p_{3\sigma}\right) \\ & + \epsilon^{\mu\nu\rho\sigma}p_{1\nu}p_{2\rho}p_{3\sigma}\left(c_{18}p_{3}\gamma_{5}\right) + \epsilon^{\mu\nu\rho\sigma}\gamma_{\nu}\gamma_{5}\left(c_{19}p_{1\rho}p_{2\sigma} + c_{20}p_{1\rho}p_{3\sigma} + c_{21}p_{2\rho}p_{3\sigma}\right) \\ & + c_{22}\epsilon_{\nu\rho\sigma\gamma}\gamma^{\mu\nu}p_{1}^{\rho}p_{2}^{\sigma}p_{3}^{\gamma} + \epsilon^{\mu\nu\rho\sigma}\gamma_{\nu\gamma}p_{3}^{\gamma}\left(c_{23}p_{1\rho}p_{2\sigma} + c_{24}p_{1\rho}p_{3\sigma} + c_{25}p_{2\rho}p_{3\sigma}\right) \\ & + \epsilon^{\mu\nu\rho\sigma}\gamma_{\nu\rho}\left(c_{26}p_{1\sigma} + c_{27}p_{2\sigma} + c_{28}p_{3\sigma}\right) \\ & + \epsilon^{\alpha\beta\gamma\delta}\gamma_{\alpha}p_{1\beta}p_{2\gamma}p_{3\delta}\left(c_{29}p_{1}^{\mu} + c_{30}p_{2}^{\mu} + c_{31}p_{1}^{\mu}\gamma_{5} + c_{32}p_{2}^{\mu}\gamma_{5}\right). \end{split}$$

where $c_n = f(p_i \cdot p_j)$

AMPLITUDES EXAMPLE: HIGGSTRAHLUNG

$$\mathcal{M}(f_1\bar{f}_2\to Z_3h_4) = \frac{1}{v}(\bar{u}_2\phi_3^*u_1) \left[A + B\frac{s}{M^2} + C\frac{t}{M^2} + \cdots\right] \\ + \frac{1}{v^3}(\bar{u}_2\phi_4u_1)(p_4\cdot\epsilon_3^*) \left[A' + B'\frac{s}{M^2} + C'\frac{t}{M^2} + \cdots\right] + \cdots$$

$$\mathsf{Primary:} \ hZ_\mu\bar{f}\gamma^\mu f \qquad \mathsf{Descendant:} \ \partial_\rho h\partial^\rho Z_\mu\bar{f}\gamma^\mu f \qquad \mathsf{Primary:} \ ih\tilde{Z}_{\mu\nu}\bar{f}\gamma^\mu \overleftrightarrow{\partial}_\nu f$$

- Most general amplitude can be rewritten in above form where there is are primaries in the amplitude with 'Mandelstam descendant' contributions (B,C,B',C' etc) suppressed by powers of s/Λ^2 , t/Λ^2 etc
- Each term in the above expansion corresponds to an anomalous coupling (HEFT operator). Higher order terms above are couplings/operators with more derivatives.

AMPLITUDES EXAMPLE: HIGGSTRAHLUNG

- While there are an infinite number of independent parameters/anomalous couplings there are only a finite number of primaries. These are all independent.
- Chang et al list all primary operators (up to arbitrary high dimension) for the important Higgs production and decay processes:

$$(\bar{f}f, gg, W^+W^-, ZZ) \rightarrow (h, hh, hZ, h\gamma, hg)$$

 $(\bar{f}f', ZW) \rightarrow hW,$
 $(fg, f\gamma, fZ) \rightarrow hf,$
 $fW \rightarrow f'h.$

These can be distinguished in angular measurements.
Measuring these can become a target for experiments.

Ex: 12 primaries for Higgstrahlung:

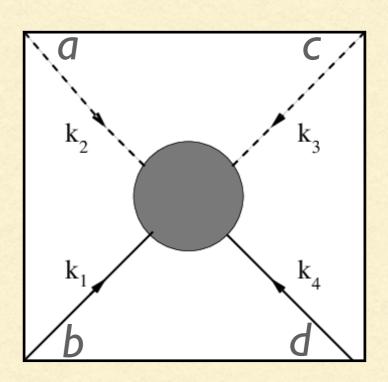
$oxed{i}$	$\mathfrak{O}_i^{hZar{f}f}$
1	$hZ^{\mu}ar{\psi}_{L}\gamma_{\mu}\psi_{L}$
2	$hZ^{\mu}ar{\psi}_R\gamma_{\mu}\psi_R$
3	$hZ^{\mu u}ar{\psi}_L\sigma_{\mu u}\psi_R+ ext{h.c.}$
4	$ih\widetilde{Z}_{\mu\nu}ar{\psi}_L\sigma^{\mu u}\psi_R+ ext{h.c.}$
5	$ihZ^{\mu}ig(ar{\psi}_L \overset{\leftrightarrow}{\partial}_{\mu} \psi_Rig) + ext{h.c.}$
6	$hZ^{\mu}\partial_{\mu}\!ig(ar{\psi}_L\psi_Rig)+ ext{h.c.}$
7	$ihZ^{\mu}\partial_{\mu}ig(ar{\psi}_{L}\psi_{R}ig)+ ext{h.c.}$
8	$hZ^{\mu}ig(ar{\psi}_L \overset{\leftrightarrow}{\partial}_{\mu} \psi_Rig) + ext{h.c.}$
9	$ih\widetilde{Z}_{\mu u}ig(ar{\psi}_L\gamma^\mu \overleftrightarrow{\partial}^ u\psi_Lig)$
10	$h\widetilde{Z}_{\mu u}\partial^{\mu}ig(ar{\psi}_{L}\gamma^{ u}\psi_{L}ig)$
11	$ih\widetilde{Z}_{\mu u}ig(ar{\psi}_R\gamma^\mu \overleftrightarrow{\partial}^ u\psi_Rig)$
12	$h\widetilde{Z}_{\mu u}\partial^{\mu}ig(ar{\psi}_R\gamma^{ u}\psi_Rig)$

PHYSICAL INTERPRETATION OF PRIMARIES

Work done in collaboration with:

Debsubhra

Sourav

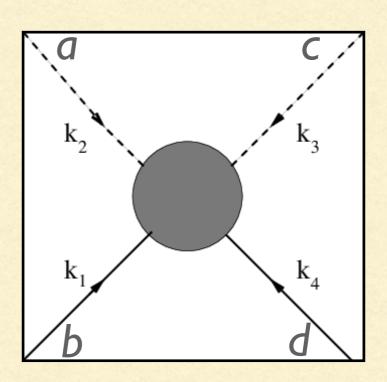


Susobhan

PHYSICAL INTERPRETATION OF PRIMARIES

- We use the partial wave expansion to get a more physical interpretation of the primaries
- For a given set of initial and final helicities the amplitude is given by an expansion in the total *J*:

$$a(\lambda_a) + b(\lambda_b) \rightarrow c(\lambda_c) + d(\lambda_d)$$



$$\mathcal{A}_{i \to f} = \sqrt{\frac{s}{p_i p_f}} \sum_{J} (2J + 1) d_{\lambda_i, \lambda_f}^{J}(\theta) T_{\lambda_a \lambda_b \lambda_c \lambda_d}^{J}(s)$$

PHYSICAL INTERPRETATION OF PRIMARIES

- We use the partial wave expansion to get a more physical interpretation of the primaries
- For a given set of initial and final helicities the primary amplitudes are given by the lowest J terms:

$$a(\lambda_a) + b(\lambda_b) \rightarrow c(\lambda_c) + d(\lambda_d)$$

$$\mathcal{A}_{i \to f}^{primary} = \sqrt{\frac{s}{p_i p_f}} (2J_{lowest} + 1) d_{\lambda_i, \lambda_f}^J(\theta) T_{\lambda_a \lambda_b \lambda_c \lambda_d}^J(s)$$

NUMBER OF PRIMARIES

- There is one primary amplitude (the lowest J contribution) for each different helicity configuration
- No of primary amplitudes:

$$N = n_{\lambda_1} \times n_{\lambda_2} \times n_{\lambda_3} \times n_{\lambda_4}$$

 Our approach enables us to also construct these table is a simple, intuitive way.

i	$\mathbb{O}_i^{hZar{f}f}$
1	$hZ^{\mu}ar{\psi}_{L}\gamma_{\mu}\psi_{L}$
2	$hZ^{\mu}ar{\psi}_R\gamma_{\mu}\psi_R$
3	$hZ^{\mu\nu}ar{\psi}_L\sigma_{\mu\nu}\psi_R + \mathrm{h.c.}$
4	$ih\widetilde{Z}_{\mu\nu}\bar{\psi}_L\sigma^{\mu\nu}\psi_R + \text{h.c.}$
5	$ihZ^{\mu}ig(ar{\psi}_L \overleftrightarrow{\partial}_{\mu} \psi_Rig) + ext{h.c.}$
6	$hZ^{\mu}\partial_{\mu}\!ig(ar{\psi}_L\psi_Rig)+ ext{h.c.}$
7	$ihZ^{\mu}\partial_{\mu}ig(ar{\psi}_L\psi_Rig)+ ext{h.c.}$
8	$hZ^{\mu}ig(ar{\psi}_L \overset{\leftrightarrow}{\partial}_{\mu} \psi_Rig) + ext{h.c.}$
9	$ih\widetilde{Z}_{\mu u}ig(ar{\psi}_L\gamma^\mu \overleftrightarrow{\partial}^ u\psi_Lig)$
10	$h\widetilde{Z}_{\mu u}\partial^{\mu}ig(ar{\psi}_{L}\gamma^{ u}\psi_{L}ig)$
11	$ih\widetilde{Z}_{\mu u}ig(ar{\psi}_R\gamma^\mu \overleftrightarrow{\partial}^ u\psi_Rig)$
12	$h\widetilde{Z}_{\mu u}\partial^{\mu}ig(ar{\psi}_R\gamma^{ u}\psi_Rig)$

$$f+f \rightarrow Z+h$$

$$N = 2 \times 2 \times 3 \times 1 = 12$$

NUMBER OF PRIMARIES

- The set of primary amplitudes is simply the lowest J contribution to the set of different helicity configurations
- No of primary amplitudes:

$$N = n_{\lambda_1} \times n_{\lambda_2} \times n_{\lambda_3} \times n_{\lambda_4}$$

Our a	approach	enables	us to co	onstruct
these	table is	a simple,	intuitive	e way.

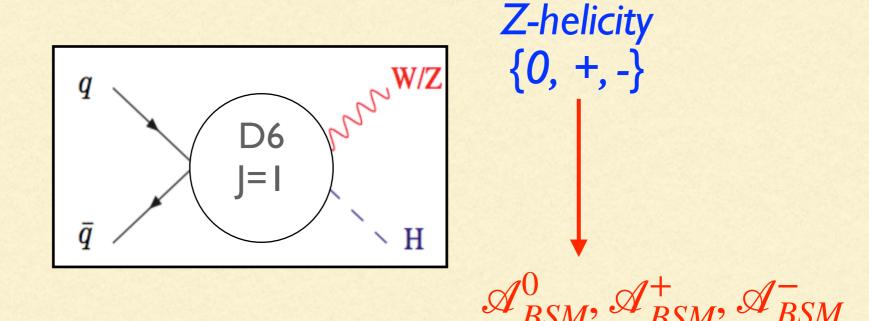
1	$hG^{\mu u}G_{ u\gamma}G^{\gamma}_{\ \mu}$
2	$hG^{lpha ho}G^{eta}_{\;\; ho}\widetilde{G}_{lphaeta}$
3	$hD^{\mu}G^{ u\gamma}G_{ u ho}D^{ ho}G_{\ \gamma\mu}$
4	$hD^{lpha}G^{ ho\sigma}\widetilde{G}_{lphaeta}D^{eta}G_{ ho\sigma}$
5	$hD^{\mu}G^{ u\gamma}\overset{\leftrightarrow}{D}_{\eta}G_{ u ho}D^{\eta ho}G_{\gamma\mu}$
6	$hD^{lpha}G^{ ho\sigma}\overset{\leftrightarrow}{D}_{\eta}\widetilde{G}_{lphaeta}D^{\etaeta}G_{ ho\sigma}$
7	$hD^{\sigma\mu}G^{ u\gamma}D_{\sigma}\overset{\leftrightarrow}{D}_{\eta}G_{ u ho}D^{\eta ho}G_{\gamma\mu}$
8	$hD^{\chi \alpha}G^{ ho\sigma}D_{\chi}\overset{\leftrightarrow}{D}_{\eta}\widetilde{G}_{lphaeta}D^{\etaeta}G_{ ho\sigma}$

$$g + g \rightarrow g + h$$

$$N = 2 \times 2 \times 2 \times 1 = 8$$

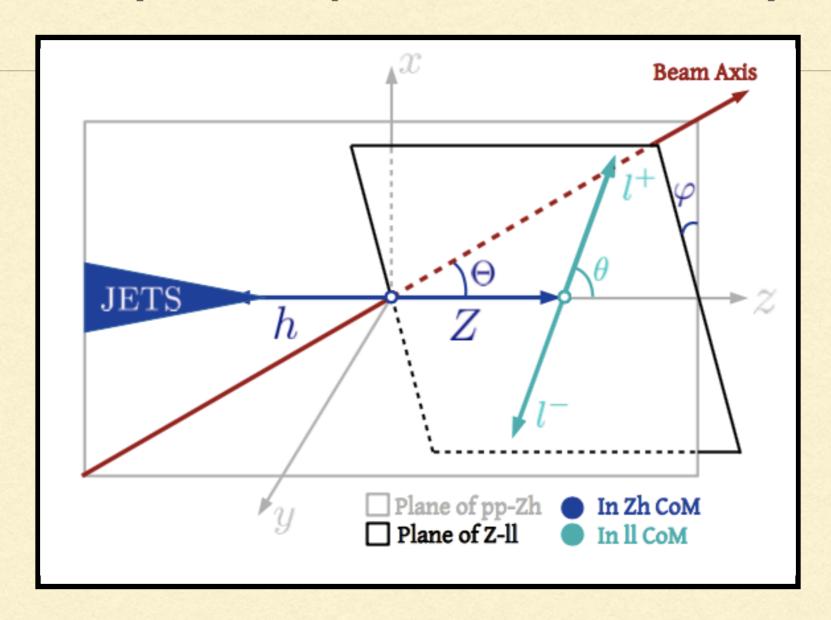
NUMBER OF PRIMARIES

- The set of primary amplitudes is simply the lowest J contribution to the set of different helicity configurations
- No of primary amplitudes:


$$N = n_{\lambda_1} \times n_{\lambda_2} \times n_{\lambda_3} \times n_{\lambda_4}$$

 Our approach enables us to construct these table is a simple, intuitive way.

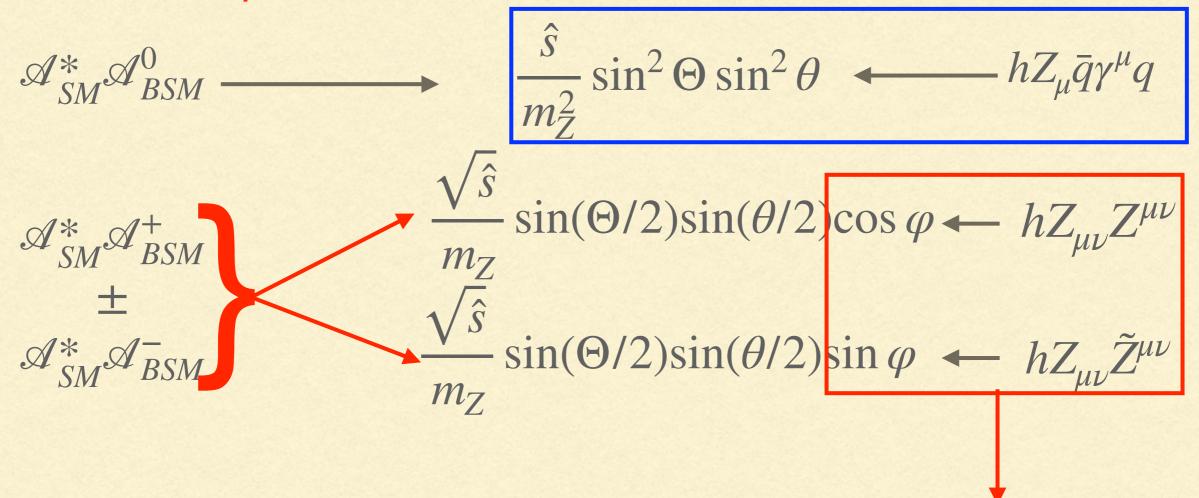
```
0_i^{hWWZ}
         h\widetilde{W}_{\mu\nu}^+W^{-\mu}Z^{\nu} + \text{h.c.}
        ih\widetilde{W}_{\mu\nu}^+W^{-\mu}Z^{\nu} + \text{h.c.}
     ih\widetilde{Z}_{\mu\nu}W^{+\mu}W^{-\nu} + \text{h.c.}
     ihD^{\mu}W^{+\nu}W_{\mu}^{-}Z_{\nu} + \text{h.c.}
     hD^{\mu}W^{+\nu}W_{\mu}^{-}Z_{\nu} + \text{h.c.}
    ihD^{\mu}W^{+\nu}W_{\nu}^{-}Z_{\mu} + \text{h.c.}
     hD^{\mu}W^{+\nu}W_{\nu}^{-}Z_{\mu} + \text{h.c.}
                 ihZ^{\mu\nu}W^+_{\mu}W^-_{\nu}
       h\partial^{\mu}Z^{\nu}W_{\mu}^{+}W_{\nu}^{-} + \text{h.c.}
    h\partial_{\mu}W_{\alpha\beta}^{+}\widetilde{W}^{-\alpha\beta}Z^{\mu} + h.c.
  ih\partial_{\mu}W_{\alpha\beta}^{+}\widetilde{W}^{-\alpha\beta}Z^{\mu} + \text{h.c.}
    h\partial^{\mu}W_{\alpha\beta}^{+}\widetilde{Z}^{\alpha\beta}W_{\mu}^{-} + h.c.
    ih\partial^{\mu}W_{\alpha\beta}^{+}\widetilde{Z}^{\alpha\beta}W_{\mu}^{-} + \text{h.c.}
  h\partial^{\mu}Z_{\alpha\beta}\widetilde{W}^{+\alpha\beta}W_{\mu}^{-}+h.c.
 ih\partial^{\mu}Z_{\alpha\beta}\widetilde{W}^{+\alpha\beta}W_{\mu}^{-} + \text{h.c.}
 h\partial^{\mu}W^{+\alpha}\widetilde{W}_{\alpha\beta}^{-}\partial^{\beta}Z_{\mu} + \text{h.c.}
ih\partial^{\mu}W^{+\alpha}\widetilde{W}_{\alpha\beta}^{-}\partial^{\beta}Z_{\mu} + \text{h.c.}
  ih\partial^{\alpha}W_{\mu}^{+}\widetilde{W}_{\alpha\beta}^{-}\partial^{\mu}Z^{\beta}+\mathrm{h.c.}
  ih\partial^{\delta}W_{\mu}^{+}\widetilde{W}_{\beta\delta}^{-}\partial^{\beta}Z^{\mu} + \text{h.c.}
  ih\partial^{\mu\nu}W_{\rho}^{+}\partial^{\rho}W_{\mu}^{-}Z_{\nu} + \text{h.c.}
  h\partial^{\mu\nu}W_{\rho}^{+}\partial^{\rho}W_{\mu}^{-}Z_{\nu} + \text{h.c.}
  ih\partial^{\mu\nu}W_{\rho}^{+}\partial^{\rho}Z_{\mu}W_{\nu}^{-} + \text{h.c.}
  h\partial^{\mu\nu}W_{\rho}^{+}\partial^{\rho}Z_{\mu}W_{\nu}^{-} + \text{h.c.}
  ih\partial^{\mu\nu}Z_{\rho}\partial^{\rho}W_{\mu}^{+}W_{\nu}^{-} + \text{h.c.}
  h\partial^{\mu\nu}Z_{\rho}\partial^{\rho}W_{\mu}^{+}W_{\nu}^{-} + \text{h.c.}
ih\partial^{\mu}W_{\nu}^{+}\partial^{\nu}W_{\rho}^{-}\partial^{\rho}Z_{\mu} + \text{h.c.}
h\partial^{\mu}W_{\nu}^{+}\partial^{\nu}W_{\rho}^{-}\partial^{\rho}Z_{\mu} + \text{h.c.}
```


 $W + W \rightarrow Z + h$ $N = 3 \times 3 \times 3 \times 1 = 27$

PRIMARIES IN HIGGSTRAHLUNG PROCESS

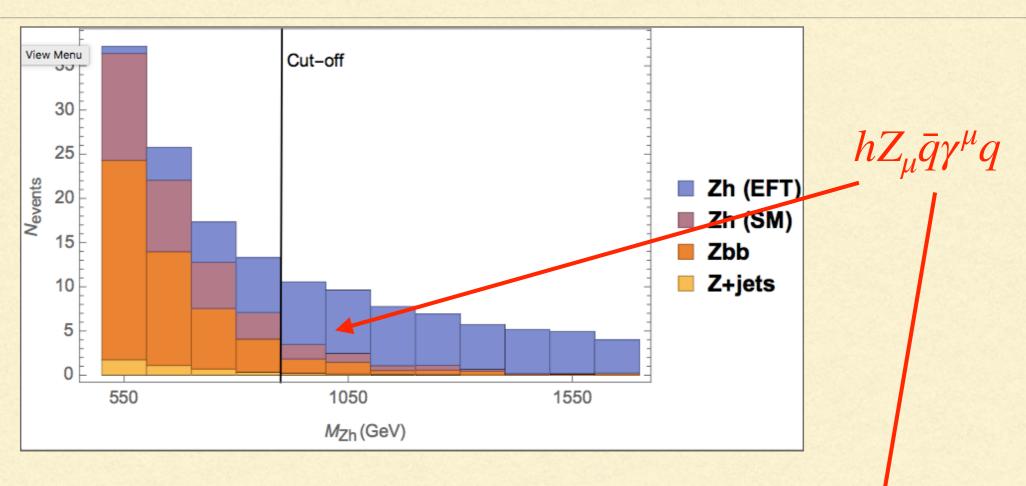
- To interfere with SM we must have initial fermions with same chirality (LL or RR).
- Averaging over initial spins this gives us 3 primary amplitudes corresponding to the 3 Z helicities

Z decays as a polarisation analyser

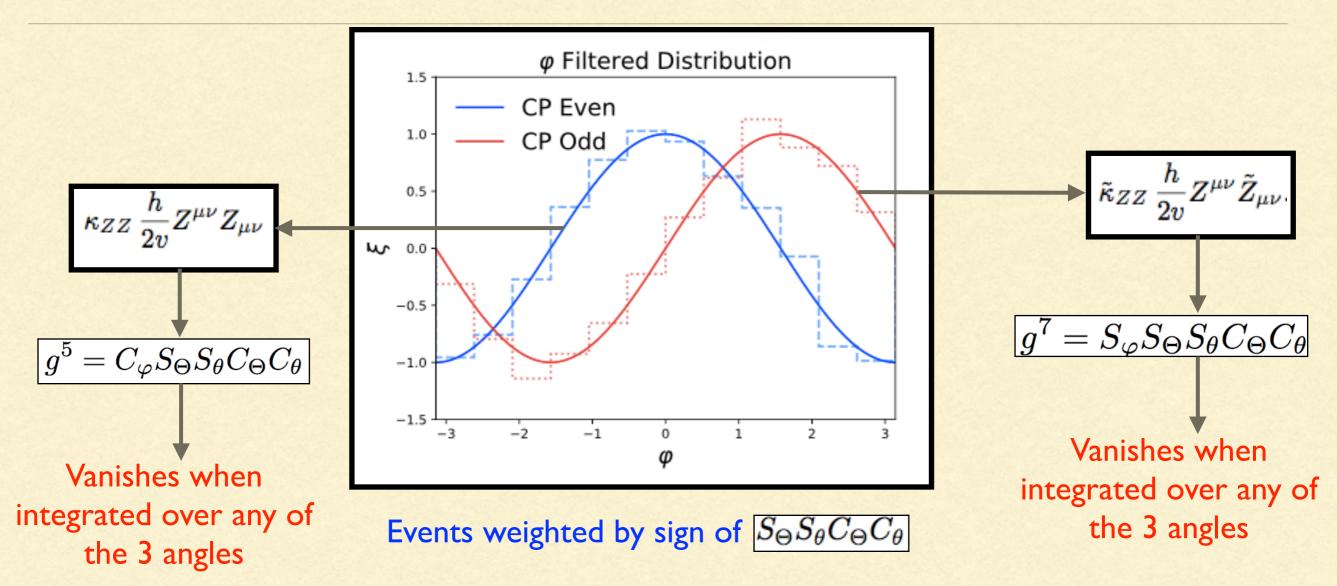


The lepton decay angular distribution in θ , φ tells us about Z helicity

AZIMUTHAL DISTRIBUTIONS AS DISCRIMINANTS


3 interference amplitudes:

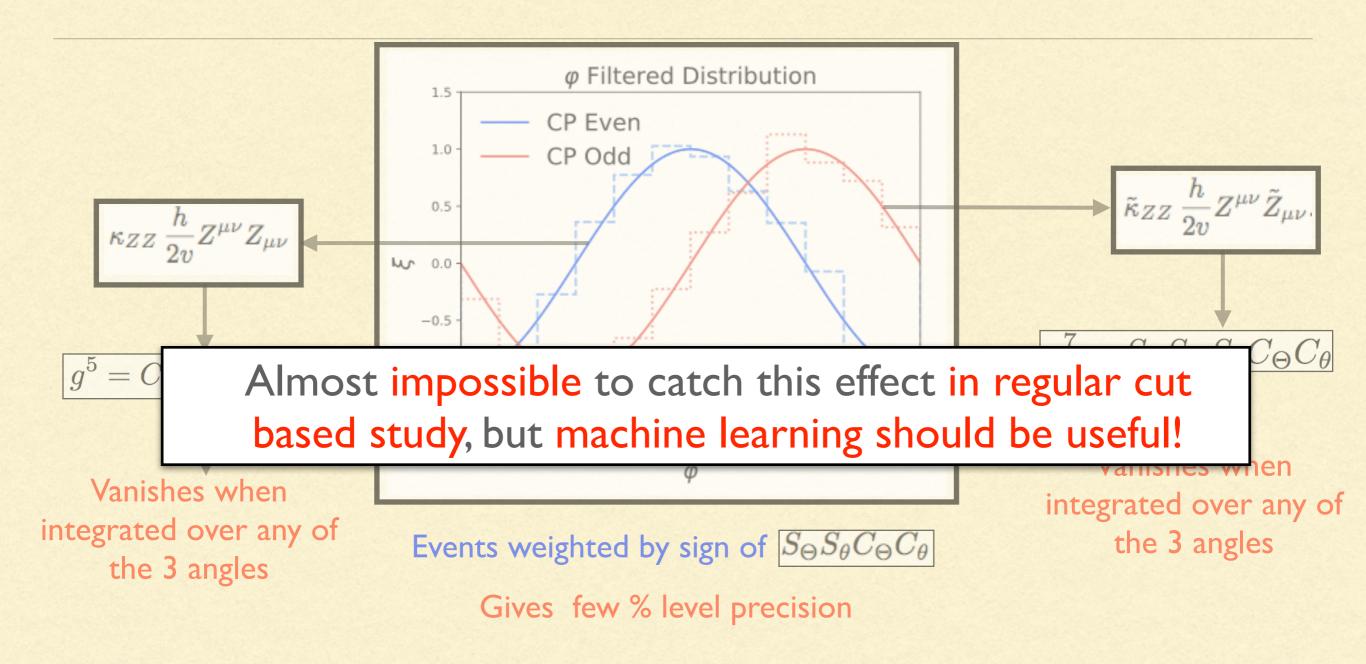
Dominant effect at high energies


Azimuthal distributions act as a discriminant between these 3 primaries

ENERGY GROWING EFFECTS

• We studied Z(II)H(bb) at high energies using boosted Higgs reconstruction techniques to obtain per-mille level bounds on hVff couplings that are competitive with LEP: $|g_{Zp}^h| < 5 \times 10^{-4}$

ATRIPLE DIFFERENTIAL OBSERVABLE



Interference resurrection!

Banerjee, RSG, Reines & Spannowsky (2019)

Banerjee, RSG, Reines, Seth & Spannowsky (2019)

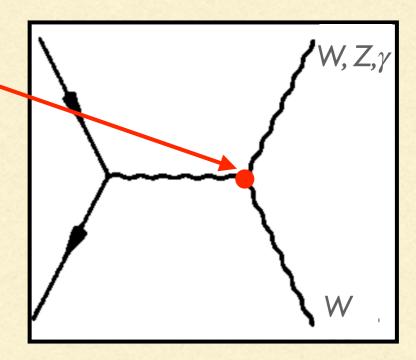
ATRIPLE DIFFERENTIAL OBSERVABLE

Banerjee, RSG, Reines & Spannowsky (2019)

Banerjee, RSG, Reines, Seth & Spannowsky (2019)

AMPLITUDE TO ALL ORDERS!

$$\mathcal{A}_{SM}^{*}\mathcal{A}_{BSM}^{+} + \mathcal{A}_{SM}^{*}\mathcal{A}_{BSM}^{-} \longrightarrow \frac{\sqrt{\hat{s}}}{m_{Z}}\sin(\Theta/2)\sin(\theta/2)\cos\varphi \longleftarrow hZ_{\mu\nu}Z^{\mu\nu}$$


$$\frac{\sqrt{\hat{s}}}{m_{Z}}\left(1 + a_{1}\frac{\hat{s}}{M^{2}} + a_{2}\frac{\hat{s}^{2}}{M^{4}} + \cdots\right)\sin(\Theta/2)\left(1 + b_{1}\frac{t}{M^{2}} + b_{2}\frac{t^{2}}{M^{4}} + \cdots\right)\cos\varphi$$

CONCLUSIONS

- SMEFT not the most general EFT for LHC studies. Amplitudes/HEFT provide a more general framework.
- Many viable UV models, map to HEFT not SMEFT.
- SMEFT vs HEFT: In SMEFT different linear combinations of anomalous couplings suppressed wrt HEFT by powers of v^2/Λ^2 .
- The 'Amplutudes' approach has identified a set of primary operators that give leading contribution to amplitudes in the EFT derivative expansion.
- Both approaches require new differential observables that can pinpoint these effects. Many require multivariate studies, high luminosities and high energies.

WW, WZ, Wy PRODUCTION

$$\begin{split} \mathcal{L}_{\mathrm{WWV}}/g_{\mathrm{WWV}} &= i g_{1}^{\mathrm{V}} \Big(W_{\mu\nu}^{\dagger} W^{\mu} V^{\nu} - W_{\mu}^{\dagger} V_{\nu} W^{\mu\nu} \Big) + i \kappa_{\mathrm{V}} W_{\mu}^{\dagger} W_{\nu} V^{\mu\nu} \\ &+ \frac{i \lambda_{\mathrm{V}}}{m_{\mathrm{W}}^{2}} W_{\lambda\mu}^{\dagger} W^{\mu}_{\nu} V^{\nu\lambda} - g_{4}^{\mathrm{V}} W_{\mu}^{\dagger} W_{\nu} \big(\partial^{\mu} V^{\nu} + \partial^{\nu} V^{\mu} \big) \\ &+ g_{5}^{\mathrm{V}} \varepsilon^{\mu\nu\rho\sigma} \Big(W_{\mu}^{\dagger} \stackrel{\leftrightarrow}{\partial}_{\rho} W_{\nu} \Big) V_{\sigma} + i \tilde{\kappa}_{\mathrm{V}} W_{\mu}^{\dagger} W_{\nu} \tilde{V}^{\mu\nu} \\ &+ \frac{i \tilde{\lambda}_{\mathrm{V}}}{m_{\mathrm{W}}^{2}} W_{\lambda\mu}^{\dagger} W^{\mu}_{\nu} \tilde{V}^{\nu\lambda} \,. \end{split}$$

s-channel contribution

anomalous triple gauge vertices (11→ 6 CP even+5 CP odd)

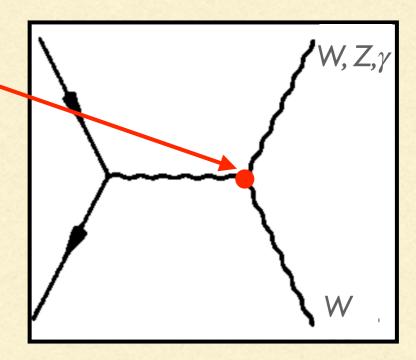
How many of these II can we measure if we use all the energy/ angular information?

FULL ANGULAR INFORMATION FOR HIGGSTRAHLUNG

- These 9 coefficients carry full differential information in SM and D6 SMEFT
- Can be extracted using an analog of Fourier analysis called the 'Method of Moments'

ff->Z(II)h matrix element squared

$$\begin{split} \sum_{L,R} |\mathcal{A}(\hat{s},\Theta,\theta,\varphi)|^2 &= a_{LL} \sin^2 \Theta \sin^2 \theta + a_{TT}^1 \cos \Theta \cos \theta \\ &+ a_{TT}^2 (1 + \cos^2 \Theta) (1 + \cos^2 \theta) + \cos \varphi \sin \Theta \sin \theta \\ &\times (a_{LT}^1 + a_{LT}^2 \cos \theta \cos \Theta) + \sin \varphi \sin \Theta \sin \theta \\ &\times (\tilde{a}_{LT}^1 + \tilde{a}_{LT}^2 \cos \theta \cos \Theta) + a_{TT'} \cos 2\varphi \sin^2 \Theta \sin^2 \theta \\ &+ \tilde{a}_{TT'} \sin 2\varphi \sin^2 \Theta \sin^2 \theta. \end{split}$$


Consider these 2 functions

Vanish when integrated over any of the 3 angles

Dunietz, Quinn, Snyder, Toki & Lipkin (1991)

WW, WZ, Wy PRODUCTION

$$\begin{split} \mathcal{L}_{\mathrm{WWV}}/g_{\mathrm{WWV}} &= i g_{1}^{\mathrm{V}} \Big(W_{\mu\nu}^{\dagger} W^{\mu} V^{\nu} - W_{\mu}^{\dagger} V_{\nu} W^{\mu\nu} \Big) + i \kappa_{\mathrm{V}} W_{\mu}^{\dagger} W_{\nu} V^{\mu\nu} \\ &+ \frac{i \lambda_{\mathrm{V}}}{m_{\mathrm{W}}^{2}} W_{\lambda\mu}^{\dagger} W^{\mu}_{\nu} V^{\nu\lambda} - g_{4}^{\mathrm{V}} W_{\mu}^{\dagger} W_{\nu} \big(\partial^{\mu} V^{\nu} + \partial^{\nu} V^{\mu} \big) \\ &+ g_{5}^{\mathrm{V}} \varepsilon^{\mu\nu\rho\sigma} \Big(W_{\mu}^{\dagger} \stackrel{\leftrightarrow}{\partial}_{\rho} W_{\nu} \Big) V_{\sigma} + i \tilde{\kappa}_{\mathrm{V}} W_{\mu}^{\dagger} W_{\nu} \tilde{V}^{\mu\nu} \\ &+ \frac{i \tilde{\lambda}_{\mathrm{V}}}{m_{\mathrm{W}}^{2}} W_{\lambda\mu}^{\dagger} W^{\mu}_{\nu} \tilde{V}^{\nu\lambda} \,. \end{split}$$

s-channel contribution

anomalous triple gauge vertices (11→ 6 CP even+5 CP odd)

How many of these II can we measure if we use all the energy/ angular information?

FG: PRFDICTIONS IN CP FVFN CASE

3 D6 SMEFT operators:

$$ig(D^{\mu}H)^{\dagger}\sigma^{a}(D^{\nu}H)W^{a}_{\mu\nu}$$

$${\textstyle{1\over 3!}} g \epsilon_{abc} W^{a\,\nu}_{\mu} W^{b}_{\nu\rho} W^{c\,\rho\mu}$$

$$\frac{ig}{2} \left(H^{\dagger} \sigma^a \overset{\leftrightarrow}{D^{\mu}} H \right) D^{\nu} W^a_{\mu\nu}$$

- 6 CP even anomalous couplings. If we measure all of these in differential studies we can verify SMEFT predictions below.

3 D6 SMEFT predictions:
$$\left|\delta\kappa_Z=\delta g_1^Z-t_{\theta_W}^2\delta\kappa_\gamma\right|\left|\lambda_Z\right|=\left|\lambda_\gamma\right|\left|g_5=0\right|$$

SMEFT OPERATORS

$$\mathcal{O}_{H\Box} = |H|^2 \Box |H|^2$$

$$\mathcal{O}_{HD} = (H^{\dagger} D_{\mu} H)^* (H^{\dagger} D^{\mu} H)$$

$$\mathcal{O}_{6} = |H|^6$$

$$\mathcal{O}_{y} = \hat{y}_{f} |H|^2 \bar{F} H f_{R}$$

$$\mathcal{O}_{f} = i H^{\dagger} D_{\mu} H \bar{f} \gamma^{\mu} f$$

$$\mathcal{O}_{F}^{(3)} = i H^{\dagger} \sigma^{a} D_{\mu} H \bar{F} \sigma^{a} \gamma^{\mu} F$$

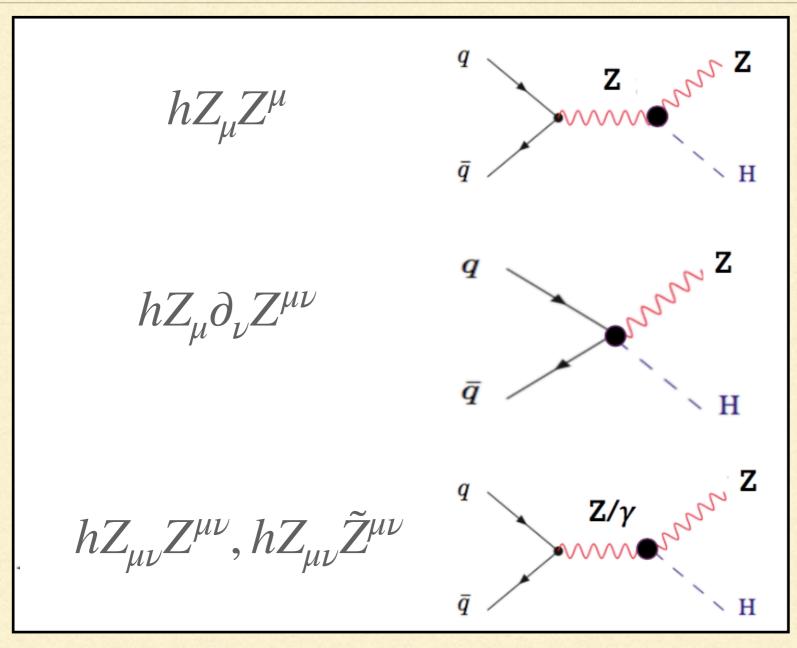
$$\mathcal{O}_{BB} = g'^{2} |H|^2 B_{\mu\nu} B^{\mu\nu}$$

$$\mathcal{O}_{WB} = g g' H^{\dagger} \sigma^{a} H W_{\mu\nu}^{a} B^{\mu\nu}$$

$$\mathcal{O}_{WW} = g^{2} |H|^2 W_{\mu\nu}^{a} W^{a\mu\nu}$$

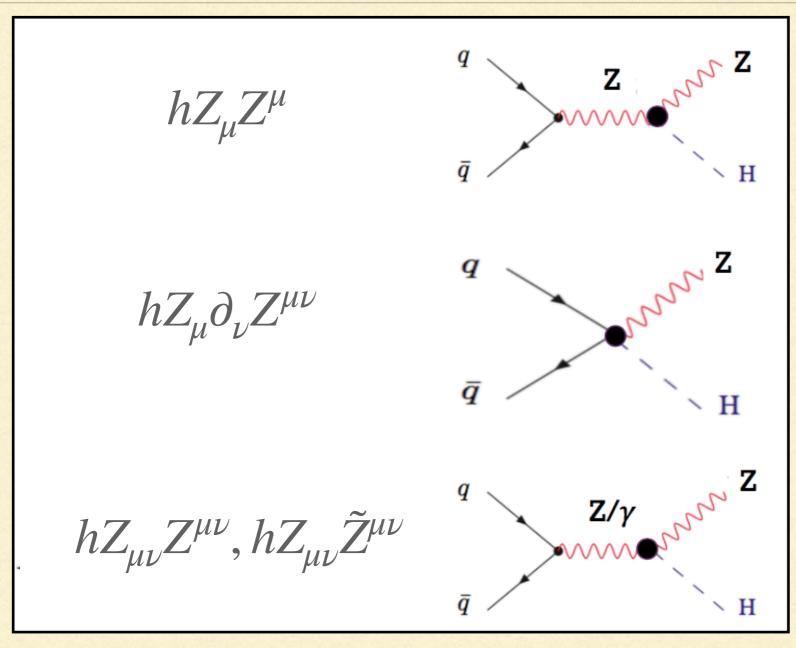
$$\mathcal{O}_{GG} = g_{s}^{2} |H|^2 G_{\mu\nu}^{A} G^{A\mu\nu}$$

Dimension 6

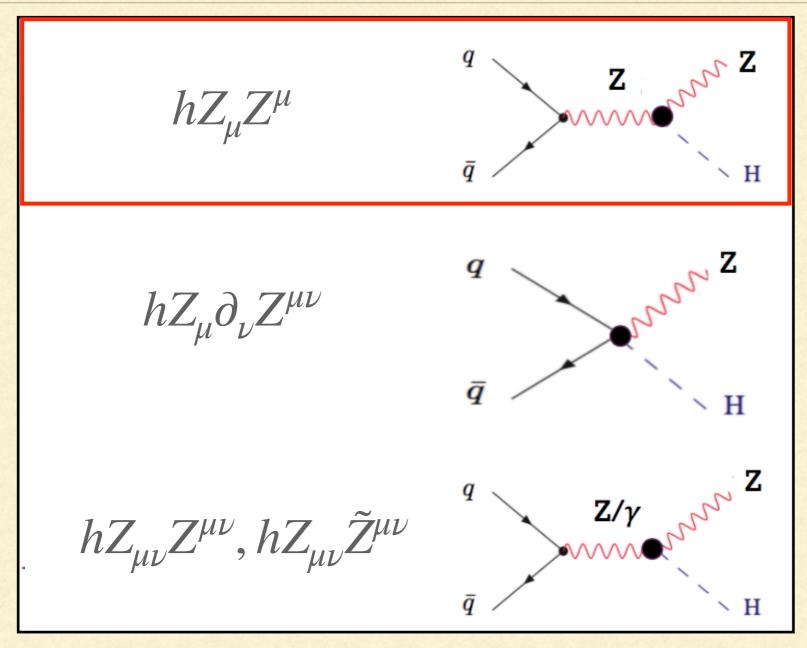

$$\begin{array}{c} H^8 \\ \mathcal{O}_8 = |H|^8 \\ H^6 D^2 : 2 \quad 2 \\ \mathcal{O}_{H^2 r} = |H|^4 |D_\mu H|^2 \\ \mathcal{O}_{H^2 T} = \frac{|H|^2}{2} (H^\dagger \overset{\leftrightarrow}{D}_\nu H)^2 \\ H^4 X^2 : 3 \quad 4 \\ \mathcal{O}_{H^2 BB} = g'^2 |H|^4 B_{\mu\nu} B^{\mu\nu} \\ \mathcal{O}_{H^2 WB} = |H|^2 \mathcal{O}_{WB} \\ \mathcal{O}_{H^2 WW} = g^2 |H|^4 W^a_{\mu\nu} W^{a\mu\nu} \\ \mathcal{O}_{U} = g^2 (H^\dagger \sigma^a H) (H^\dagger \sigma^b H) W^a_{\mu\nu} W^{b\mu\nu} \\ \mathcal{O}_{H^2 GG} = g^2_s |H|^4 G^A_{\mu\nu} G^{A\mu\nu} \\ \mathcal{O}_{H^2 G} = i |H|^2 H^\dagger \overset{\leftrightarrow}{D}_\mu H \bar{f} \gamma^\mu f \\ \mathcal{O}_{H^2 F} = i |H|^2 H^\dagger \overset{\leftrightarrow}{D}_\mu H \bar{F} \gamma^\mu F \\ \mathcal{O}_{3F}^{(3)} = i |H|^2 H^\dagger \sigma^a \overset{\leftrightarrow}{D}_\mu H \bar{F} \sigma^a \gamma^\mu F \\ \mathcal{O}_{3F}^{(3)} = i |H|^2 H^\dagger \sigma^a D_\mu H + h.c.) H^\dagger \overset{\leftrightarrow}{D}_\nu H \\ \mathcal{O}_{\partial W} = i g W^a_{\mu\nu} (H^\dagger \sigma^a D_\mu H + h.c.) H^\dagger \overset{\leftrightarrow}{D}_\nu H \\ \mathcal{O}_{\partial W} = i g W^a_{\mu\nu} \partial_\mu (H^\dagger H) H^\dagger \sigma^a \overset{\leftrightarrow}{D}_\nu H \\ \mathcal{O}_{\partial B} = i g' B_{\mu\nu} \partial_\mu (H^\dagger H) H^\dagger \overset{\leftrightarrow}{D}_\nu H \\ \mathcal{O}_{DH1} = |D_\mu H|^4 \\ \mathcal{O}_{DH2} = (D_\mu H^\dagger D_\nu H + D_\nu H^\dagger D_\mu H)^2 \\ \mathcal{O}_{DH3} = (D_\mu H^\dagger D_\nu H - D_\nu H^\dagger D_\mu H)^2 \end{array}$$

Dimension 8

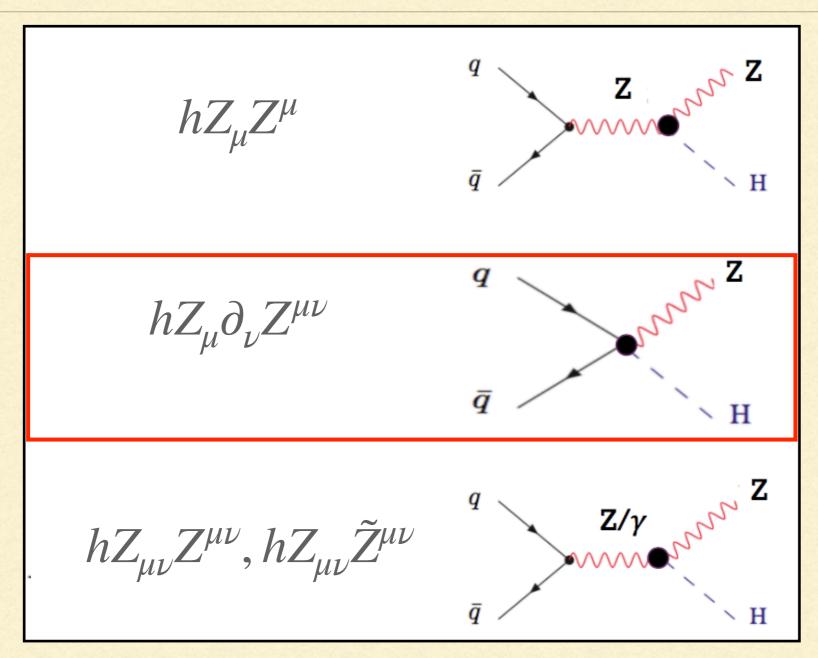
PROBING D6 SMEFT


- Only 17 D6 operators contribute to the processes we are considering
- Only 17 measurements sufficient to constrain these

$$\mathcal{O}_{H\square} = |H|^2\square|H|^2$$
 $\mathcal{O}_{HD} = (H^\dagger D_\mu H)^* (H^\dagger D^\mu H)$
 $\mathcal{O}_6 = |H|^6$
 $\mathcal{O}_y = \hat{y}_f |H|^2 \bar{F} H f_R$
 $\mathcal{O}_f = i H^\dagger D_\mu H \bar{f} \gamma^\mu f$
 $\mathcal{O}_F^{(3)} = i H^\dagger \sigma^a D_\mu H \bar{F} \sigma^a \gamma^\mu F$
 $\mathcal{O}_{BB} = g'^2 |H|^2 B_{\mu\nu} B^{\mu\nu}$
 $\mathcal{O}_{WB} = g g' H^\dagger \sigma^a H W^a_{\mu\nu} B^{\mu\nu}$
 $\mathcal{O}_{WW} = g^2 |H|^2 W^a_{\mu\nu} W^{a\mu\nu}$
 $\mathcal{O}_{GG} = g_s^2 |H|^2 G^A_{\mu\nu} G^{A\mu\nu}$

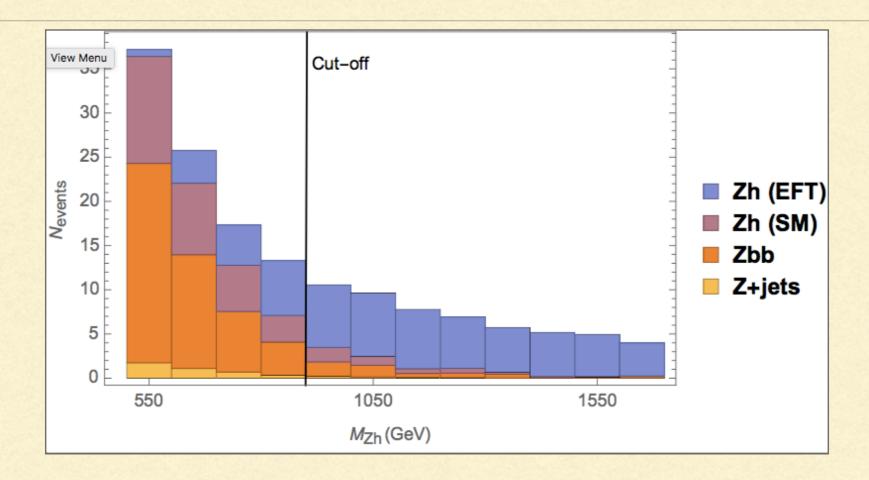

All these anomalous couplings can be completely predicted in terms of other more precise measurements, if we assume D6 SMEFT.

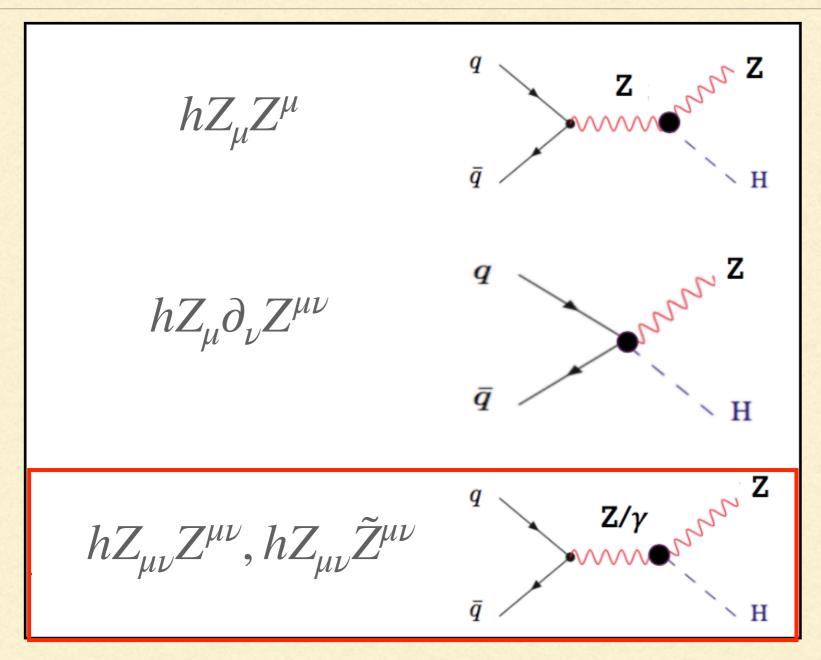
3 hZZ anomalous couplings


All these anomalous couplings must be measured, if we want to test D6 SMEFT

3 hZZ anomalous couplings

Rescales SM *hZZ* coupling. No differential signature. Only changes the rate.


3 hZZ anomalous couplings


Grows with energy wrt SM. Dominates at high energies.

3 hZZ anomalous couplings

ENERGY GROWING EFFECTS

• We studied Z(II)H(bb) at high energies using boosted Higgs reconstruction techniques to obtain per-mille level bounds on hVff couplings that are competitive with LEP: $|g_{Z\mathbf{p}}^h| < 5 \times 10^{-4}$

Sophisticated angular variable required

3 hZZ anomalous couplings

Banerjee, RSG, Reines & Spannowsky (2019)

Banerjee, RSG, Reines, Seth & Spannowsky (2019)