
Particle Dark Matter  
In The 

Early Universe

Satyanarayan Mukhopadhyay

IACS, Kolkata

ICHEPAP2023, SINP 
December, 2023



Particle Dark Matter In Standard Cosmology
• I shall assume general theory of relativity to be the theory of gravity at all scales.

• Model for the Early Universe: a homogeneous & isotropic background + small 
perturbations of 1 part in 105 (Evidence: the Cosmic Microwave Background)

• Model for Structure Formation: Starting from the seed perturbations of δ ~ 10-5 , 
gravitational instability leads to growth of perturbations — first described by linear 
perturbation theory until δ ~ O(1), subsequently by a theory/N-body simulation in 
the non-linear regime, when structures form by gravitational collapse. Seed 
perturbations: nearly scale-invariant power spectrum for the gravitational potential

• Result: With photons, baryons, and neutrinos, it is not possible to reach δ ~ O(1) 
by a redshift z ~ O(10). Reason: baryons are tightly coupled to photons by 
Thompson scattering of e-𝛾 and Coulomb scattering of e-p, until photon decoupling 
at z ~ 1100. This ensures their perturbations oscillate until z ~ 1100, and grow 
linearly with the scale factor afterwards, when they become free.

• Resolution in standard cosmology: a form of non-relativistic matter with no 
necessary interaction with photons, baryons, electrons or neutrinos, except 
through gravity.



Description of Particle Dark Matter In Cosmology
• As for any large collection of particles, in cosmology, dark matter is 

described by a phase-space distribution function f(x,p,t). 

• If there are no interactions, then this distribution function evolves by the 
Liouville’s theorem:

• Just like the metric, the distribution function also has a homogeneous and 
isotropic part with small perturbations f = f0 (|p|,t)+ f1 (x,p,t)

• The background distribution f0  is not known a priori (unlike for thermalized 
photons). We work with the moments of the kinetic equations. 

•

Number density

Bulk velocity



Description of Particle Dark Matter In Cosmology

• The zeroth moment satisfies (in conformal-Newtonian gauge):

• The zeroth moment at zeroth order in perturbation gives

• The zeroth and first moments in first order give the key perturbation equations for CDM

• Here, we ignored terms of order v2 ~ (p/m)2 : this is the definition of cold dark matter — 
which suffices to describe the CMB anisotropies and the large scale structure of the 
Universe.

• If (p/m) is larger, we need to consider higher moments — e.g., for warm dark matter. Too 
much (p/m) leads to too much free-streaming, and wash-out of smaller scale density 
correlations — the free-streaming should be less than about 100 kpc.

Dilution from expansion

Average density+relative perturbations

Continuity equation in expanding 
+fluctuating space-time

Continuity equation

Euler equation



Evolution of the density perturbations with CDM

Fig. made by Arnab Pal, with CLASS, for a  
representative Fourier mode with k= 0.25 h Mpc-1

CDM linear perturbation equations Einstein equations

With similar equations for baryons, photons (that also include the collision terms due to 
Thompson scattering of e-𝛾 and Coulomb scattering of e-p)  and neutrinos

Before decoupling, baryons are tightly coupled  
to the photons and oscillate after horizon crossing.
DM grows logarithmically during RD, and linearly 

in MD, thus δc >> δb at decoupling

After decoupling, baryons lose pressure support  
of photons and fall into the gravitational potential  

wells created by DM. At late times, δc/δb ->1.

Without the DM assisted growth, baryons don’t 
cluster fast enough to explain the formation 

of galaxies.

Summary: non-gravitational couplings of DM 
are not necessary for explaining CMB anisotropies  

and LSS; cosmology constrains the total  
DM density, but not the particle mass



DM Production in the Early Universe: where mass and 
couplings become relevant

• Scenario without Inflation: There is no theory of genesis of the radiation bath. The highest 
temperature of the radiation era is unknown. Given the required proton density, we can 
compute the abundance of light elements, and successful BBN requires a temperature of 
around 1 MeV. (A proton anti-proton asymmetry is also required, otherwise, the proton density 
becomes negligible due to strong annihilations.) Hence, DM density may be (1) an initial 
condition, (2) produced gravitationally, or (3) through interactions with the SM bath. 

• Scenario with Inflation: The radiation and DM densities can no longer be initial conditions, as 
inflation will erase all initial densities. The highest temperature of the radiation era is still 
unknown, but existing constraints on the Hubble scale during inflation restricts the reheat 
temperature to be below around 1016 GeV. Hence, DM density may be produced (1) 
gravitationally during or after reheating, (2) at the reheating epoch from the inflaton, (3) through 
interactions with the SM bath after reheating

• The crucial DM distribution function: In all cases above, the DM distribution function may 

• (1) remain non-thermal throughout, 

• (2) internally thermalize with a temperature TDM ≠ TSM, 

• (3) thermalize with the SM sector with TDM = TSM

• In the following, I shall take toy examples from the reheating production after inflation of 
the initial distribution and illustrate these three possibilities for the DM distribution 
function 



Scenario-1: Dark Matter phase-space distribution 
does not Thermalize

Gravitational production is always present for massive particles due to the 
time-dependent metric — its efficiency depends upon the Hubble rate, the 
particle mass and spin, and whether the coupling is minimal or with 
additional couplings to the Ricci scalar 

Apart from this, small additional interactions can also lead to non-
thermalized production. There are a large number of possibilities: mixing 
with, or small couplings to SM particles, reheating etc.

Example-2: DM produced in reheating — distribution depends on details of 
the reheating era: (i) reheat temperature, (ii) duration of reheating, (iii) 
inflaton mass

Example-1: singlet fermion DM (sterile neutrino) produced from small 
mixing with SM neutrinos ℒ ⊃ LHN

Consider a simple scenario in which at the end of slow-roll, the inflaton field 
undergoes a damped oscillation around the minimum of the potential, 
approximated by a quadratic form near the minimum: equivalent to a field 
theory of massive spin-0 particles with negligible velocity.



Production in perturbative reheating: Initial Distribution Function
Example: Light Singlet fermion DM (ѱ) produced in reheating from the 
inflaton (ϕ) — ѱ does not have any renormalizable self or SM interaction 
terms

ℒint ⊇ − μHH†Hϕ − λψ ψϕ .

∂ fψ( ⃗k , t)
∂ t

− H ⃗k . ⃗∇ ⃗k fψ( ⃗k , t) = −
1

2E ⃗k
∫

d3 ⃗k ′�
(2π)3 2E′ � ⃗k′�

d3 ⃗p
(2π)3 2E ⃗p

(2π)4δ4(p − k′�− k)

× 2[ |M |2
ψ ψ→ϕ fψ( ⃗k , t)fψ( ⃗k ′�, t)(1 + fϕ( ⃗p , t)) − |M |2

ϕ→ψ ψ fϕ( ⃗p , t)(1 − fψ( ⃗k , t))(1 − fψ( ⃗k′ �, t))] .

In this case, the initial DM distribution function can be computed from
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Perturbative reheating: Evolution of distribution function beyond simple redshift
Question : Since in this scenario the inflaton necessarily couples to both SM and 
DM fields, can inflaton-mediated  scatterings become important in DM cosmology?

ψ(p1)ψ(p2) ↔ ψ(p3)ψ(p4)
ψ(p1)h(p2) ↔ ψ(p3)h(p4)
ψ(p1)ψ(p2) ↔ h(p3)h(p4) λFSH = ∫

tEQ

tdec

⟨v(t)⟩
a(t)

dt,

Co-moving free-streaming 
length

Thermalization is not achieved, but the average velocity at MR equality can be 
modified by a factor of 40 —> important implications for structure formation. 
Scatterings populate lower momentum modes, reducing the average velocity.

Solve the integro-differential 
kinetic equation with collision 
terms from 2 to 2 scatterings

A. Ghosh, SM, 2022

Relativistic regime
NR

Regime ⟨v⟩ ∝
⟨ | ⃗p |⟩ ∝

1/a



Scenario-2: DM self-thermalizes

• If DM is a scalar, it can naturally have self-scatterings and 
number-changing annihilations, which are necessary for 
internal thermalization. 


• With no significant scatterings with the SM bath, its initial 
density can come from reheating, or gravitational production.


• Post-reheating, in the limit of a heavy inflaton compared to 
the reheat temperature, DM undergoes only self-interactions, 
which may lead to internal thermalization


• The DM phase-space density evolves following the same 
Eqn. but now with a richer collision term

TDM( ≠ TSM)No significant scatterings with the SM bath

∂f
∂t

+
d ⃗x
dt

. ∇x f +
d ⃗p
dt

. ∇p f = C[ f ]
2DM      2DM + 3DM      2DM 



Internal Thermalization: how background cosmology changes

The zeroth moment of the kinetic equation, at zeroth order in an FRW 
background gives the evolution of the number density

dnχ(t)
dt

+ 3Hnχ(t) = gχ ∫
d3p

(2π)3
C[ fχ]

And the second moment at zeroth order gives the evolution of the DM 
temperature, if the self-interactions lead to internal thermalization

dTχ

dt
+ 2HTχ +

Tχ

nχ (
dnχ

dt
+ 3Hnχ) −

H
3 ⟨ |p |4

E3 ⟩ =
1
nχ ∫

d3p
(2π)3

|p |2

3E
C[ fχ]

Where Tχ ≡
gχ

nχ ∫
d3p

(2π)3

|p |2

3E
fχ(p, t) .

We can solve this coupled system of Eqns. to determine the DM 
temperature and number density as a function of time.

The initial condition for the DM temperature is unknown, and can be set 
by the reheating dynamics. D.Ghosh, S. Gope, SM, to appear



Self-interacting singlet scalar DM
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Non-standard temperature evolution with 3 to 2 processes: Tχ(t) ∼ 1/log a(t)

ξ(a) = TSM(a)/Tχ(a)

Dolgov, 1980; Carlson, Machacek, Hall, 1992; … Ghosh, Gope, SM, 2022

A. Ghosh, Gope, SM, 2022

T ∼ 1/a

T ∼ 1/a2

T ∼ 1/log a

μχ = 0

3 to 2: minimal number 
changing process -> if 
absent density determined 
by initial conditions (such as 
at reheating)



Self-interacting singlet scalar DM: cosmological probes
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< 10−5, at TSM(aLS) ∼ 0.26 eV,

A. Ghosh, Gope, SM, 2022

CMB:

Heimersheim, Schoeneberg, Hooper, Lesgourgues 2020; Buen-Abad, Emami, Schmaltz, 2018

ξi > 1.07, 95 % C . L . Constraint from BBN, for mχξi < TBBNBBN:
Very cold DM: No equilibrium for 3 to 2 at T ~ m, density from initial 
conditions       leads to a lower bound on DM temperature

Implies strong 
upper bound on 
DM Temperature

See Poster by S. Gope
for details



How different can the dark matter temperature be in a 
reheating production scenario?  

D.Ghosh, S. Gope, SM, to appear
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Example: If the Higgs-inflaton operator dominates the SM coupling:
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Key message: the DM temperature at reheating can be significantly modified 
by subsequent necessarily present inflaton mediated DM-SM scattering 
processes, fixed by the same couplings



Scenario-3: DM thermalizes with SM bath

This naturally is the most predictive and widely tested scenario. There 
are many simple models which are very much viable at present. 

TDM = TSM

The simplest model with one free parameter (the DM mass): DM is 
the neutral component of a multiplet of the electroweak gauge group. 
Different spin and representations possible.

The next to simplest model with two free parameters (mass, Higgs 
coupling): DM is a singlet fermion coupled to the Higgs boson.

We may even set a theoretical upper bound on the thermal dark matter 
mass in this scenario with standard cosmology: from S-matrix Unitarity

The possible existence of a DM chemical potential may change the 
standard picture considerably.

Several talks in this conference

Briefly discuss next



How high can the mass of thermal dark matter be?

Unitarity of the S-matrix (                        ) implies the optical 
theorem for a 2-particle initial state 

SS† = S†S = I

which implies an upper bound on the total inelastic scattering 
cross-section for the given initial state

σinelastic ≤ ∑
ℓ

π
| ⃗p |2 (2ℓ + 1)

Im(ℳαα) = 2 | ⃗p |ECM ∑
β

σα→β

The maximum reaction rate for a 2       k process is thus:

⟨σ2→kvrel⟩max = ∑
ℓ

(2ℓ + 1)
4 π
m2

χ
xe−(k−2)x, x = mχ /T

Using detailed balance in chemical equilibrium for the process    
k        2, we can then show

⟨σk→2vk−1
rel ⟩max = ∑

ℓ

(2ℓ + 1)
23k − 2

2

gk−2
χ m3k−4

χ
(πx)3k − 5

2 , x = mχ /T

Bhatia, SM, 2021

Griest, Kamionkowski, 1990; Hui, 2001

α



How high can the mass of thermal dark matter be?

⟨σ2→2vrel⟩max, s−wave =
4 π
m2

χ
x Griest, Kamionkowski, 1990

⟨σ3→2v2
rel⟩max, s−wave =

8 2(πx)2

gχm5
χ

Bhatia, SM, 2021

Specific cases:

This in turn implies the maximum DM mass, if it saturates the 
observed total density.

The maximum inelastic cross-section implies the minimum 
surviving number density of DM.

Bhatia, SM, 2021



Brief remarks on the DM Chemical Potential
• Baryons and electrons have a small chemical potential, 


• The neutrino chemical potential is only weakly constrained by BBN


• If DM had a thermal equilibrium history, then in general it can have a non-zero 
chemical potential 


• For           the relationship between the DM mass and annihilation rate is 
modified


• Several possible interesting minimal mechanisms proposed to generate the 
DM asymmetry from scatterings. 


• A key question: how to observationally discriminate a symmetric DM scenario 
from an asymmetric one (for bosonic ADM strong constraints exist from the 
existence of old compact objects)?


• One possibility is to use a neutrino signal, which is viable if DM dominantly 
annihilates (or decays) to neutrinos. A pair of (anti-)DM may annihilate to a 
pair of (anti-)neutrinos,. How to differentiate neutrinos from anti-neutrinos with 
existing/upcoming detectors? 

ηB ∼ 10−9 (μB /mB ∼ 10−4)

μDM

μDM ≠ 0
Nussinov, 1985; Griest, Seckel, 1987

nDM + nanti−DM ∼ 2e−m/TFO cosh(μDM /TFO)

|μν /T | ≲ 0.02, T ∼ 1 MeV

D. Ghosh, R. Gandhi, SM, B. Mukhopadhyaya, to appear 

e.g., A. Ghosh, D. Ghosh,  SM, 2020

Fukuda, Matsumoto, SM, 2014



Summary: Lessons so far from early Universe cosmology
• The standard cosmological model that fits the CMB anisotropy and LSS data well, does not 

require any non-gravitational interaction of DM — the idealization of collisionless DM works 
well. 

• There is of course some room for optional DM interactions with itself and with photons, 
baryons and neutrinos — constraints on them have been derived using the CMB and LSS 
data in many studies. The power spectrum at small scales usually get suppressed due to 
elastic scatterings. The velocity-independent DM-photon scattering should be around six 
orders of magnitude below the Thompson scattering, and DM-baryon scattering around three 
orders of magnitude below the same for a 1 GeV DM.

• The total matter density enters through the Poisson equation for the gravitational potential, 
and is constrained well. The baryonic mass density is constrained both by CMB and BBN, 
and hence the total DM mass density.

• Low velocity dispersion is important, the free-streaming length should not be larger than 
around 100 kpc. Hence the phase-space distribution function is the key. 

• The DM particle mass does not enter the collisionless perturbation equations directly — 
hence CDM cosmology does not constrain it in a model independent way. The mass and 
couplings enter through the DM production mechanism in the early Universe.

• Generically, the DM phase space distribution function may (1) remain non-thermal, (2) may 
internally thermalize or (3) may thermalize with the SM bath

• Cosmological probes constrain the distribution function properties and the DM temperature



• We are trying to search for a particle for which we neither know the mass 
nor the interaction strength, both of which can span several orders of 
magnitude. 

• Contrast this with previously predicted particles which were successfully 
found later: positron, pion, neutrino, the weak gauge bosons, the Higgs 
boson. 

• The Higgs was perhaps the hardest of these, and I am reminded of the 
closing paragraph in the famous “A phenomenological profile of the 
Higgs boson” by Ellis, Gaillard and Nanopoulos (1976) which 
summarized the challenge: 

• “We should perhaps finish with an apology and a caution. We apologize 
to experimentalists for having no idea what is the mass of the Higgs 
boson, unlike the case with charm, and for not being sure of its couplings 
to other particles, except that they are probably all very small. For these 
reasons we do not want to encourage big experimental searches for the 
Higgs boson, but we do feel that people performing experiments 
vulnerable to the Higgs boson should know how it may turn up.”

A light-hearted outlook :)


