Seesaw determination of dark matter relic density

ICHEPAP (SINP, Kolkata), 2023.

Rupert Coy, Thomas Hambye, Aritra Gupta

Phys. Rev. D.104.083024 (2021)

Setting the stage

- Motivations:
 - 1. Two of the biggest unsolved mysteries: Origin of neutrino masses and Dark matter relic density \Rightarrow Can they be interrelated?
 - 2. Can dark matter be detected (at least indirectly) in recent future, even if it is very *feebly* coupled to SM?
- Neutrino mass is very elegantly explained by Type-I seesaw mechanism:

$$\begin{aligned} \mathscr{L}_{\text{seesaw}} &= i\overline{N_R}\partial N_R - \frac{1}{2}m_N(\overline{N_R}N_R^c + \overline{N_R^c}N_R) \\ &- (Y_V\overline{N_R}\tilde{H}^{\dagger}L + h.c.) \,, \end{aligned}$$

• The light neutrino masses are given by:

$$m_{\nu} = -\frac{\nu^2}{2} Y_{\nu}^T m_N^{-1} Y_{\nu}$$

- Note, we need at least three heavy neutrinos to explain the three light neutrino masses.
- Only one of the Yukawa couplings can be very small given $\Delta m^2_{\rm sol} \sim 10^{-5}~{\rm eV}^2$ and $\Delta m^2_{\rm atm} \sim 10^{-3}~{\rm eV}^2$.
- To explain the dark matter we next add a neutrino portal to the hidden sector:

$$\delta \mathscr{L} = -Y_{\chi} \overline{N} \phi \chi + h.c..$$

- Here both χ and ϕ are SM singlets.
- One or both of them can be dark matter candidates. χ is a Majorana fermion.
- Given the smallness of the Yukawa couplings dark matter is produced by freeze-in mechanism.

Dark matter production

- We assume that $m_N < m_{Z,W,h}$ and $m_{N_{2,3}} > m_h$.
- N₂ and N₃ do not take part in DM production and is assumed to have very small neutrino portal interactions.
- DM is produced via freeze-in primarily from $N \rightarrow \phi \chi$ decay (controlled by y_{χ}).
- Because of this, the comoving number density $Y_N \big|_{T \sim m_Z} = Y_{\phi}(T_0) = Y_{\chi}(T_0).$
- Hence it is sufficient to calculate Y_N (controlled by the seesaw couplings, Y_v) and thereby establishing an one-to-one correspondence between the DM and seesaw parameters!
- Important: The relic density becomes independent of y_χ (hence the correspondence!) only if the two body decay is the dominant mode of production (more on this later).

- N is produced dominantly from decays: $h \rightarrow N\nu, W^{\pm} \rightarrow Nl^{\pm}, Z \rightarrow N\nu.$
- The decay width of $V \rightarrow Nf$ is given by:

$$\Gamma_{V \to Nf} = \frac{1}{48\pi} m_V |Y_{\nu i}|^2 f(m_N^2/m_V^2).$$

where $f(x) = (1 - x)^2(1 + 2/x)$ and *V* is W^{\pm} or *Z*.

- For $m_N < m_V$ the gauge boson decay width is enhanced by a factor of m_V^2/m_N^2 wrt that of h.
- Freeze-in condition entails: $\Gamma_V/H|_{T \simeq m_Z} \lesssim 1 \Rightarrow \sum_i |Y_{vi}|^2 \lesssim 1 \cdot 10^{-16} \cdot \left(\frac{m_N}{10 \text{ GeV}}\right)^2$
- After solving a simple Boltzmann Eq. we get $Y_{\text{DM}}^{\text{today}} = 3 \times 10^{-4} \sum_{i=h,Z,W} \frac{g_i \Gamma_i}{M_i^2}$

• Hence, one finally obtains

$$\Omega_{DM}h^2 \simeq 10^{23} \sum_i |Y_{\nu i}|^2 \left(\frac{m_{\chi} + m_{\phi}}{1 \,\text{GeV}}\right) \left(\frac{10 \,\text{GeV}}{m_N}\right)^2$$

• Equating this to 0.12 we get:

$$\sum_{i} |Y_{\nu i}|^2 \simeq 10^{-24} \cdot \left(\frac{m_N}{10 \,\text{GeV}}\right)^2 \left(\frac{1 \,\text{GeV}}{m_\chi + m_\phi}\right). \tag{1}$$

• Using
$$m_{v_1} < \sum_i |Y_{vi}|^2 v^2/(2m_N)$$
 we get

$$m_{\nu_1} < 4 \cdot 10^{-12} \,\mathrm{eV} \cdot \frac{m_N}{10 \,\,\mathrm{GeV}} \cdot \left(\frac{1 \,\,\mathrm{GeV}}{m_\chi + m_\phi}\right) \,.$$

- $f\bar{f} \rightarrow NL$: only 20% of the total N number density.
- The one-to-one correspondence holds iff: $\Gamma_{N \to \phi \chi} > \sum_{f} \Gamma_{N \to \nu f \bar{f}} + \Gamma_{N \to l f \bar{f}'}$

(2)

6/18

Three-body decays, neutrino line ...

• The two body decay width is given by:

$$\Gamma_{N
ightarrow\chi\phi}\simeqrac{1}{16\pi}m_N|Y_\chi|^2\left(1+rac{2\,m_\chi}{m_N}
ight)$$

• The three body width is given by:

$$\Gamma_{N \to \nu f \bar{f}} = \frac{N_c}{1536 \,\pi^3} \, |Y_{\nu i}|^2 \frac{g_2^2}{\cos \theta_W^2} (g_L^2 + g_R^2) \frac{m_N^3}{m_Z^2} \, d_{\bar{f}}^2$$

and similarly for $N \rightarrow \ell f \bar{f}'$.

• Therefore $\Gamma_{N \to \phi \chi} > \sum_{f} \Gamma_{N \to \nu f \bar{f}} + \Gamma_{N \to l f \bar{f}'}$ implies a lower limit on y_{χ} :

$$|Y_{\chi}|^2 \Big|_{\min} \simeq 10^{-4} \sum_i |Y_{vi}|^2 (m_N / 10 \,\text{GeV})^2$$
 (3)

• Further, if $m_{\chi} > m_{\phi}$ then it can dominantly decay (with life-time > age of the Universe) to produced a neutrino line.

• The decay width is given by:

$$\Gamma_{\chi \to \phi \nu} = \frac{1}{32\pi} |Y_{\chi}|^2 \frac{\sum_i |Y_{\nu i}|^2 \nu^2}{m_N^2} m_{\chi} \left(1 - \frac{m_{\phi}^2}{m_{\chi}^2}\right)^2$$
(4)

• This life-time has a lower limit as dictated by several neutrino experiments¹ $\Rightarrow y_{\chi}^2|_{\text{max}}$. Thus, Using (1) and (3) in (4) we get the black lines as upper-limit on τ_{χ} :

[⊥]JHEP05 (2021) 101 (Coy, Hambye)

Constraints

- <u>BBN</u>: Constraints from BBN is not a matter of concern because the number of N particles decaying is very limited, and they negligibly contribute to the total energy density at this time (hence to the Hubble expansion rate) even if N decays into two particles which are relativistic.
- Moreover, the decay is into χ and φ, which do not cause any photo-disintegration of nuclei since they do not produce any electromagnetic or hadronic material.
- <u>Structure Formation</u>: Imposing that DM, which has kinetic energy $\sim m_N/2$ when produced from N decay, redshifts enough so that it is non-relativistic when $T \sim \text{keV}$ gives an upper bound on the χ lifetime (the red lines in the plot)

$$au_{\chi} \lesssim 10^{28} \sec \Big(rac{m_{DM}}{m_N}\Big)^2 \Big(rac{m_N}{10\,{
m GeV}}\Big)\,.$$

(5)

A closer look at structure formation

- More formally, we should calculate λ_{fs} and compare it with the limit obtained from Ly- α .
- Free streaming length is given by:

$$\lambda_{FS} = \int_{t_i}^{t_0} \frac{\langle v(t) \rangle}{a(t)} dt = \frac{1}{m_{\chi}} \int_{t_i}^{t_0} \frac{\langle p_{\chi}(t) \rangle}{a(t)} dt$$

Here, ⟨p_χ⟩ = ∫d³p_χf_χp_χ/(∫d³p_χf_χ).
The distribution function f_γ is solved via:

$$\hat{L}f_N = Hx \frac{\partial f_N}{\partial x} = \mathscr{C}_N(Z \to Nv) + \mathscr{C}_N(W^{\pm} \to N\ell^{\pm}) - C_N(N \to \chi\phi)$$

where, $\hat{L} = \left(\frac{\partial}{\partial t} - Hp \frac{\partial}{\partial p}\right)$, $x \equiv m_N/T$, and

$$Hx\frac{\partial f_{\chi}}{\partial x} = \mathscr{C}_{\chi}(N \to \chi \phi) = \frac{Y_{\chi}^2 \left((m_N + m_{\chi})^2 - m_{\phi}^2\right)}{16\pi p_{\chi} E_{\chi}} \int_{E_{N(\chi),-}}^{E_{N(\chi),+}} dE_N f_N$$

- Using the distribution function we can find λ_{fs} and enforce $\lambda_{fs} < 66$ kpc.
- The allowed parameter space for a typical y_{χ}^2 :

• Theoretically, $y_{\chi} \lesssim 10^{-10}$ since $\Gamma_{\chi} > \tau_{\text{universe}}^{-1}$.

²JCAP 02 (2023) 028, Rupert Coy, AG

11/18

A second scenario: Relativistic Freeze-out

- Consider that the heaviest particle among χ and φ has a lifetime < the age of the universe ⇒ much larger values of y_χ.
- In this case, DM is made of only the lightest species and no neutrino line can be observed.
- A large y_{χ} coupling \Rightarrow thermalisation of N, χ and ϕ .
- The thermalised hidden sector is characterized by a temperature, T' < T.
- The one-to-one connection is lost ?
- Yes, if DM undergoes a non-relativistic, secluded freeze-out in the hidden sector.
- But here, since $m_{\phi} < m_N, m_{\chi}$, the *v*-portal annihilation processes ($\phi \phi \leftrightarrow \chi \chi$ etc) will not decouple when DM is non-relativistic but when DM is relativistic.
- \Rightarrow DM relic doesn't depend on the annihilation cross section but only on T'/T.

- T'/T is set by SM \rightarrow N freeze-in and $\sim 10^4 y_v^{1/2} \sqrt{10 \,\text{GeV}/m_N}$.
- T'/T can be estimated by considering that at the peak of N freeze-in production, when $T \simeq m_Z$, each N has an energy $\simeq m_Z$, so that the dark sector energy density is

$$\rho_{DS}|_{T \simeq m_Z} \simeq n_N|_{T \simeq m_Z} m_Z = (\pi^2/30) g_{HS}^{\star} T'^4,$$
(6)

with n_N given by $Y_N = n_N/s$ found earlier.

• Knowing T'/T we can find the relic density by³:

$$\Omega_{DM} = 1.74 \times 10^{11} \left(\frac{m_{\phi}}{1 \, TeV}\right) \left(\frac{T'}{T}\right)^3 \left(\frac{g_{\rm DM}}{g_{\star}^s}\right) \tag{7}$$

where $n_{\rm DM} \sim T'^3$ and entropy conservation at decoupling time is used.

³Phys.Lett.B 807 (2020) 135553, Hambye, Lucca, Vanderheyden.

• Using (6) in (7) we get:

$$\Omega_{DM}h^2 \simeq 2.5 \times 10^{18} \left(\sum_i |Y_{vi}|^2\right)^{3/4}$$
$$\cdot g_{DM} \left(\frac{1\,\text{GeV}}{m_N}\right)^{3/2} \left(\frac{m_{DM}}{100\,\text{MeV}}\right), \qquad (8)$$

- Note that this requires slightly smaller values of Y_{ν} couplings than the first scenario, because the dark sector thermalisation process increases the number of DM particles.
- T'/T can be more accurately calculated using ⁴:

$$\frac{d\rho_{\rm DS}}{dt} + 4H\rho_{\rm DS} = \frac{1}{a^4} \frac{d(\rho_{\rm DS} a^4)}{dt} = -\sum_{i=Z,h,W} \frac{g_i}{2\pi^2} m_i^3 T \Gamma_i K_2(m_i/T)$$

• The results are in good agreement with Eq.(7).

⁴ JCAP05(2012)034, Chu, Hambye, Tytgat

y_{χ} dependence in Scenario-II

- This scenario is analogous to the freeze-out of neutrinos.
- N acts as the heavy mediator instead of W/Z.
- T' is hence determined by annihilations like $\chi \chi \rightarrow \phi \phi$ with N as a mediator $(m_N > T' > m_{\rm DM})$.
- Using $n \langle \sigma v \rangle_{\rm FD} \sim H(T)$ and the expression for T'/T we get,

$$T'_{
m dec} \sim 10 \left(\frac{10^{-12}}{Y_{
m V}}\right) \left(\frac{0.01}{Y_{\chi}}\right)^4 \left(\frac{m_N}{
m GeV}\right)^3 \,
m keV\,.$$
 (9)

- For relativistic freeze-out we should have $T' > m_{\rm DM} \Rightarrow$ upper limit on y_{χ} .
- But, before all these one should explicitly check that whether the dark sector particles have indeed themalised among themselves.
- This is controlled by annihilations of the type $\chi\chi \rightarrow NN$.
- Condition for thermalisation gives a lower bound on y_{χ} .

 A collection of y_χ dependent and independent constraints are shown below for typical values of y_χ ⁵:

• We find: $10^{-4} \lesssim y_{\chi} \lesssim 10^{-2}$.

⁵JCAP 02 (2023) 028, Rupert Coy, AG

15/18

Summary

- Seesaw-induced *W*, *Z* and *h* decays could be at the origin of the DM relic density, even though DM is not a seesaw sterile neutrino.
- the usual type-I seesaw model turns out to have sufficient flexibility to allow freeze-in production of DM from these decays in a way which is determined only by the seesaw parameters and the mass of the DM particle.
- As always for freeze-in, these scenarios are not easily testable because they are based upon the existence of tiny interactions.
- The first scenario predicts a neutrino-line within reach of existing or near-future neutrino telescopes.
- Moreover, both scenarios are falsifiable as they predict a small mass for the lightest neutrino.
- Scenario-I is less restrictive than Scenario-II as far as the 1-to-1 correspondence is concerned.

THANK YOU

¹⁷/₁₈

Backup: Distribution functions and number densities

• The distribution of f_N controls when the χ production stops:

$$f_N(x, y_N) \propto \exp\left[\frac{-\Gamma_N}{2x^2 H(x)} \left(x\sqrt{x^2 + y_N^2} - y_N^2 \tanh^{-1}\frac{x}{\sqrt{x^2 + y_N^2}}\right)\right]$$

• Comoving number density:

