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Setting the stage
• Motivations:

1. Two of the biggest unsolved mysteries: Origin of neutrino
masses and Dark matter relic density ⇒ Can they be
interrelated?

2. Can dark matter be detected (at least indirectly) in recent
future, even if it is very feebly coupled to SM?

• Neutrino mass is very elegantly explained by Type-I seesaw
mechanism:

Lseesaw = iNR∂/NR −
1
2

mN(NRNc
R +Nc

RNR)

−(YνNRH̃†L+h.c.) ,

• The light neutrino masses are given by:

mν =−v2

2
Y T

ν m−1
N Yν
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• Note, we need at least three heavy neutrinos to explain the
three light neutrino masses.

• Only one of the Yukawa couplings can be very small given
∆m2

sol ∼ 10−5 eV2 and ∆m2
atm ∼ 10−3 eV2.

• To explain the dark matter we next add a neutrino portal to
the hidden sector:

δL =−YχNϕ χ +h.c. .

• Here both χ and ϕ are SM singlets.
• One or both of them can be dark matter candidates. χ is a

Majorana fermion.
• Given the smallness of the Yukawa couplings dark matter is

produced by freeze-in mechanism.
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Dark matter production
• We assume that mN < mZ,W,h and mN2,3 > mh.
• N2 and N3 do not take part in DM production and is assumed

to have very small neutrino portal interactions.
• DM is produced via freeze-in primarily from N → ϕ χ decay

(controlled by yχ).
• Because of this, the comoving number density

YN
∣∣
T∼mZ

= Yϕ (T0) = Yχ (T0).
• Hence it is sufficient to calculate YN (controlled by the seesaw

couplings, Yν) and thereby establishing an one-to-one
correspondence between the DM and seesaw parameters!

• Important: The relic density becomes independent of yχ
(hence the correspondence!) only if the two body decay is the
dominant mode of production (more on this later).
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• N is produced dominantly from decays:
h → Nν ,W± → N l±, Z → Nν .

• The decay width of V → N f is given by:

ΓV→N f =
1

48π
mV |Yν i|2 f (m2

N/m2
V ).

where f (x) = (1− x)2(1+2/x) and V is W± or Z.
• For mN < mV the gauge boson decay width is enhanced by a

factor of m2
V/m2

N wrt that of h.
• Freeze-in condition entails: ΓV/H|T≃mZ ≲ 1 ⇒

∑i |Yν i|2 ≲ 1 ·10−16 ·
(

mN
10GeV

)2

• After solving a simple Boltzmann Eq. we get
Y today

DM = 3×10−4 ∑
i=h,Z,W

gi Γi

M2
i
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• Hence, one finally obtains

ΩDMh2 ≃ 1023 ∑
i
|Yν i|2

(mχ +mϕ

1GeV
)(10GeV

mN

)2
.

• Equating this to 0.12 we get:

∑
i
|Yν i|2 ≃ 10−24 ·

( mN

10GeV
)2( 1GeV

mχ +mϕ

)
. (1)

• Using mν1 < ∑i |Yν i|2v2/(2mN) we get

mν1 < 4 ·10−12 eV · mN

10 GeV ·
(

1GeV
mχ +mϕ

)
. (2)

• f f̄ → N L: only 20% of the total N number density.
• The one-to-one correspondence holds iff:

ΓN→ϕ χ > ∑
f

ΓN→ν f f̄ +ΓN→l f f̄ ′
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Three-body decays, neutrino line ...
• The two body decay width is given by:

ΓN→χϕ ≃ 1
16π

mN |Yχ |2
(

1+
2mχ

mN

)
• The three body width is given by:

ΓN→ν f f̄ =
Nc

1536π3 |Yν i|2
g2

2
cosθ 2

W
(g2

L +g2
R)

m3
N

m2
Z
,

and similarly for N → ℓ f f̄ ′.
• Therefore ΓN→ϕ χ > ∑

f
ΓN→ν f f̄ +ΓN→l f f̄ ′ implies a lower limit

on yχ :
|Yχ |2

∣∣∣
min

≃ 10−4 ∑
i
|Yν i|2 (mN/10GeV)2 (3)

• Further, if mχ > mϕ then it can dominantly decay (with
life-time > age of the Universe) to produced a neutrino line.
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• The decay width is given by:

Γχ→ϕν =
1

32π
|Yχ |2

∑i |Yν i|2v2

m2
N

mχ

(
1−

m2
ϕ

m2
χ

)2
(4)

• This life-time has a lower limit as dictated by several neutrino
experiments1 ⇒ y2

χ |max. Thus, Using (1) and (3) in (4) we get
the black lines as upper-limit on τχ :

1JHEP05 (2021) 101 (Coy, Hambye)
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Constraints
• BBN: Constraints from BBN is not a matter of concern

because the number of N particles decaying is very limited,
and they negligibly contribute to the total energy density at
this time (hence to the Hubble expansion rate) even if N
decays into two particles which are relativistic.

• Moreover, the decay is into χ and ϕ , which do not cause any
photo-disintegration of nuclei since they do not produce any
electromagnetic or hadronic material.

• Structure Formation: Imposing that DM, which has kinetic
energy ∼ mN/2 when produced from N decay, redshifts enough
so that it is non-relativistic when T ∼ keV gives an upper
bound on the χ lifetime (the red lines in the plot)

τχ ≲ 1028 sec
(mDM

mN

)2( mN

10GeV
)
. (5)
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A closer look at structure formation
• More formally, we should calculate λfs and compare it with the

limit obtained from Ly-α .
• Free streaming length is given by:

λFS =
∫ t0

ti

⟨v(t)⟩
a(t)

dt =
1

mχ

∫ t0

ti

⟨pχ(t)⟩
a(t)

dt

• Here, ⟨pχ⟩=
∫

d3 pχ fχ pχ/(
∫

d3 pχ fχ).
• The distribution function fχ is solved via:

L̂ fN =Hx
∂ fN

∂x
=CN(Z →Nν)+CN(W±→Nℓ±)−CN(N → χϕ)

where, L̂ =
(

∂
∂ t −H p ∂

∂ p

)
, x ≡ mN/T , and

Hx
∂ fχ

∂x
=Cχ(N → χϕ)=

Y 2
χ ((mN +mχ)

2 −m2
ϕ )

16π pχEχ

∫ EN(χ),+

EN(χ),−
dEN fN
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• Using the distribution function we can find λfs and enforce
λfs < 66 kpc.

• The allowed parameter space for a typical yχ
2:

• Theoretically, yχ ≲ 10−10 since Γχ > τ−1
universe.

2JCAP 02 (2023) 028, Rupert Coy, AG
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A second scenario: Relativistic Freeze-out
• Consider that the heaviest particle among χ and ϕ has a

lifetime < the age of the universe ⇒ much larger values of yχ .
• In this case, DM is made of only the lightest species and no

neutrino line can be observed.
• A large yχ coupling ⇒ thermalisation of N, χ and ϕ .
• The thermalised hidden sector is characterized by a

temperature, T ′ < T .
• The one-to-one connection is lost ?
– Yes, if DM undergoes a non-relativistic, secluded freeze-out in

the hidden sector.
– But here, since mϕ < mN , mχ , the ν-portal annihilation

processes (ϕϕ ↔ χχ etc) will not decouple when DM is
non-relativistic but when DM is relativistic.

⇒ DM relic doesn’t depend on the annihilation cross section but
only on T ′/T .
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– T ′/T is set by SM→N freeze-in and ∼ 104 y1/2
ν

√
10GeV/mN.

• T ′/T can be estimated by considering that at the peak of N
freeze-in production, when T ≃ mZ, each N has an energy
≃ mZ, so that the dark sector energy density is

ρDS|T≃mZ ≃ nN |T≃mZ mZ = (π2/30)g⋆HST ′4 , (6)

with nN given by YN = nN/s found earlier.
• Knowing T ′/T we can find the relic density by3:

ΩDM = 1.74×1011
( mϕ

1TeV

)(T ′

T

)3(gDM

gs
⋆

)
(7)

where nDM ∼ T ′3 and entropy conservation at decoupling time
is used.
3Phys.Lett.B 807 (2020) 135553, Hambye, Lucca, Vanderheyden.
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• Using (6) in (7) we get:

ΩDMh2 ≃ 2.5×1018
(
∑

i
|Yν i|2

)3/4

·gDM

(1GeV
mN

)3/2( mDM

100 MeV
)
, (8)

• Note that this requires slightly smaller values of Yν couplings
than the first scenario, because the dark sector thermalisation
process increases the number of DM particles.

• T ′/T can be more accurately calculated using 4:

dρDS

dt
+4HρDS =

1
a4

d(ρDS a4)

dt
=− ∑

i=Z,h,W

gi

2π2 m3
i T Γi K2(mi/T )

• The results are in good agreement with Eq.(7).
4JCAP05(2012)034, Chu, Hambye, Tytgat
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yχ dependence in Scenario-II
• This scenario is analogous to the freeze-out of neutrinos.
• N acts as the heavy mediator instead of W/Z.
• T ′ is hence determined by annihilations like χ χ → ϕϕ with N

as a mediator (mN > T ′ > mDM).
• Using n⟨σv⟩FD ∼ H(T ) and the expression for T ′/T we get,

T ′
dec ∼ 10

(
10−12

Yν

)(
0.01
Yχ

)4( mN

GeV
)3

keV . (9)

• For relativistic freeze-out we should have T ′ > mDM ⇒ upper
limit on yχ .

• But, before all these one should explicitly check that whether
the dark sector particles have indeed themalised among
themselves.

• This is controlled by annihilations of the type χχ → N N.
• Condition for thermalisation gives a lower bound on yχ .
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• A collection of yχ dependent and independent constraints are
shown below for typical values of yχ

5:

• We find: 10−4 ≲ yχ ≲ 10−2.
5JCAP 02 (2023) 028, Rupert Coy, AG
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Summary
• Seesaw-induced W , Z and h decays could be at the origin of

the DM relic density, even though DM is not a seesaw sterile
neutrino.

• the usual type-I seesaw model turns out to have sufficient
flexibility to allow freeze-in production of DM from these
decays in a way which is determined only by the seesaw
parameters and the mass of the DM particle.

• As always for freeze-in, these scenarios are not easily testable
because they are based upon the existence of tiny interactions.

• The first scenario predicts a neutrino-line within reach of
existing or near-future neutrino telescopes.

• Moreover, both scenarios are falsifiable as they predict a small
mass for the lightest neutrino.

• Scenario-I is less restrictive than Scenario-II as far as the
1-to-1 correspondence is concerned.
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THANK YOU
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Backup: Distribution functions and number
densities

• The distribution of fN controls when the χ production stops:

fN(x,yN) ∝ exp

 −ΓN

2x2H(x)

x
√

x2 + y2
N − y2

N tanh−1 x√
x2 + y2

N


• Comoving number density:
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