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Why finite-density QCD?

Temperature T (VeV]

Dynamics in colliders like RHIC = finite-density, where wide range of heavy
ions collide, producing high density of baryons at high temperatures

Understand QCD phase diagram, quarks, gluons in up,np # 0 regime

(Crossover T = 156.5 (1.5) MeV for up = 0 from Lattice QCD)
[HotQCD, Bazavov et. al., Phys. Lett. B 795, 15 (2019)]

Still mostly conjectured. Need evidences of : 1. Nature of phase transition
between QGP (high T, ug) and present hadronic phase (low T, ug) and its
order (scaling analysis), 2. QCD critical point (if any) 3. Tehiral, Teonys
and their differences, 4. neutron stars, 5. color superconductors etc.

For all these, know QCD equation of state and thermodynamics, partition
function Z(u, V, T), in a non-perturbative formulation.
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The real trouble

Lattice QCD Intro - Talk by Marina Marinkovic on 11.12.2023

Grassmann integration — Z(ug) = [ DU e~ %Vl [det M(up, U)]

Except pp = 0, determinant at finite real up is complex — Monte-Carlo

sampling (MCS) not possible for complex integral measure.

For applying MCS, we re-weight the measure : Make measure real, and
the observable complex. And how we do it 7?7

Z(up) = [DUe%slUl[det M(0,U)]A(up,U) where
observable A(ug,U) = det M(up,U)/det M(0,U) and is complex

A(pp) = R(up) e®®#B) and § — sign problem : Large oscillations

between + and — due to large R and 6 for large pp, computing not easy.

(cos @) ~ 0: average phasefactor (cos0) = L 7 >y cos(U)

Many methods proposed to avoid this problem (imaginary p analysis,
Lefschitz thimbles, contour deformation), here I focus on

Approach of Taylor expansion around pp = 0 and subsequent
resummation of the series
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Taylor Expansion : good but that’s not all

® Two thermodynamic observables : 1) % and 2) N o= 9 [AP]

T3 = 8(up/T) | TT

e Taylor Expansion to O(uY) of AP given by [Ejiri ct.al. hep-lat/0312006]

AP 1 TZ@B)] _ ~~ . (mB\"
¢ T VTS “{2(0)] ;C"(T) W)
® Particle-antiparticle symmetry of QCD: Eqn.(1) is even in pug/T.

® ¢, ~ > {(Da)P(Dp)?--+) : Linear combinations

® D, are correlation functions = ﬁj?‘)" In det M(MB)|MB:0’

c1 = <D1>, cy = <D2>+<D%>

® CP symmetry: D, are purely real (imaginary) for n being even (odd)

e All powers D%, Dg and products D% DZ are unbiased (discussed later)
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Drawbacks of Taylor and so ...

Good but,

1. Finite order in pup

2. Slowly converging non-monotonic behaviour for different N

3. Requires computing higher orders, which becomes extremely tedious.
Resummation of finite-order series is a good alternative because,

® A series to all orders in up and get all the contributions of D, n < N.

® Results :- Improved monotonicity and convergence (needs more work)

® Some knowledge about higher ¢, from lower ones, which is good (more

precision in ¢z and c4)
And these are achieved by using

1. Rational functions in Pade resummation [Bollweg et.al., Phys.Rev.D 105
(2022) 7, 074511| and

2. Exponential function in exponential resummation (I will discuss)
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Exponential Resummation and Stochastic Bias

<exp [i (%)n%] >O :| } (real part only) (2)

n=1

APR 1
N In < Re
T4 VT3

an
Wlndew\/ﬂr)(%)‘w:o (3)

N
Dy L ZR Df{”, where Dﬁ{") =
Nr = I(eB

® Analytically not possible to determine M1 [Dn =>tr (fn (M_l))]
So, use random volume sources. We use Nr number of random sources

within every gauge configuration with Dﬁf) — estimate of D,, from source r.

1. Finite Np — estimate bias in each D,,, vanishes as Np — o©

2. Eqgns.(2) and (3) — biased estimates of (Dy)™ for m > 2. (greater effect

for larger values, orders in up)

Nr Nr
(Dn)™ = Biased estimate + [D]'] where [D]'] = Z e Z pyv) ... p{rm)
T1F e FETm

All m distinct sources on equal footing in unbiased estimate [D7?]
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Way out: Cumulant expansion

To eliminate bias, we first use cumulant expansion. In cumulant expansion of
AP with M cumulants, we find

AP 1 1 X N nD

NM x\ _ Fn = HBA™ Dn

T —VT31n<e >_ : X,Z( ) (4)
k1= (X), k2 = (X2) - (X)2,... (M,N =4 in our work)

Unbiased cumulants : s} = k1, k% = k2 + ([X?] — X2) .-

[SM, Hegde, Schmidt, Phys.Rev.D 106 (2023), 034504, arXiv: 2205.08517[hep-lat]]

050 1.
] |APS 4 [T Unbiased ro IN 7% = INE4 IT%: Unbiased +

040 [ 14PF T = Biased &~ INE 7% = Biased &+

030 |8PE T e 0.60 INF T3 =
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® Noticeable difference between unbiased and biased (blue vs red points)

® But no all-order resummation due to truncation
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Unbiased exponential resummation

Find formulation which will keep exponential function + unbiased estimates

APEE - " Cn
s =) = 5SS
where C1 = D1, C2 = D3+ ([D%] - D%) ,+++ < (pn basis) (5)

Py 1 X X Y (X) L Ln(X)
Ti T yrs AN ZN:<6 > Y(X) =3, nl

N
where X =Y (“%) Dn, L1=X, Ls=[X?]—X?.. « (X basis) (6)

[SM, P. Hegde, Phys.Rev.D 108 (2023) 3, 034502, arXiv: 2302.06460[hep-lat]]
Eqn.(5) — Taylor series exactly upto O(uL)

Eqn.(6) — cumulant expansion exactly of M*" order
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Plots

We do our calculations on a 323 X 8 lattice with physical quark masses

15
18PY /T4 = \8PY|/ T+ : X basis mee 18PF /T4 == 1P|/ T¢
004 - jap]) /T basis o1 8PT|/T¢ e

X basis e
basis 6

e
0Pl T e

18R4T X basis

1 basis 141

010
008 ) & o015
s 18P |/ T4 vl 3 1APE| /T4 e
002
T =135 MeV 0.05 " o010
00t fy » B %, T=157Mev T 176 MoV
°w @ Yy, el 0.05
000 B oeltglieaan g 0 L
(T 000 (T? 000 wom?
45 4 05 o 05 1 5 2 El o 1 2 4 El o 1 2
012 030 060
IaNJ /T IANS| /T3 X basis wwe N = N$/T2: X basis e NI NS /T : X basis v
010 jang /T Wbasis o« N Wbasis o+ N[/ e pbasis o1
008 020 0.40

5T e
18N}/ T T e

T=157MeV

NI

T=176MeV

® Bias effect dominant in lower T' (135 > 157 > 176)

® Good agreement with the Taylor results at all three working

temperatures (Hadronic,

, QGP phases) for both AP and N

® Higher errorbars with higher values and derivative order of up

(N > AP). Also for (135 > 157 > 176)

9/12



With 2000 random sources
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AP 4/T* (left) and N2 4/T? (right) plots in both bases for T' = 135 MeV
[SM, P. Hegde, arXiv:2209.11937hep-lat]]

® With Ng = 2000, old results improve a lot (blue vs red)

® Better Agreement: N = 500, new method > Ngr = 2000, old method
(black and magenta vs blue)

® Saves considerable amt. of computational time, storage space
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Phasefactor plots
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AP not well-defined beyond pp/T > 1.2 for 135, 1.4 for 157 MeV
Exactly where (cos6) starts converging towards zero (odd Dy’s)
Falls faster in unbiased case (more oscillations of higher Dy,)
Falls faster for lower temperatures (stochastic fluctuations are more)

A reliable indicator of the severity of sign problem (Needs data of more T')
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Conclusions and future Works

Understood the importance of unbiased estimates

Difference between biased and unbiased in cumulant expansion results
Realised the very idea of unbiased exponential resummation
Obtained unbiased results to some finite order in pp (O(1Y))

Even better than old results with larger Np

Thus saving a lot of computational costs and time

Managed to preserve unbiased behaviour within exponential structure
Preserving phasefactor, a good indicator of sign problem severity

In the limit N — oo, this is exactly equal to the infinite Taylor series

Future works: Exponential vs Pade comparative study (going on - --), studies

involving chiral symmetry restoration and breaking etc. etc.
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