

12/12/2023

Searches for heavy particles decaying to Higgs bosons in CMS experiment

Suman Chatterjee

HEPHY, Austrian Academy of Sciences, Vienna

International Conference on High Energy Particle & Astroparticle Physics (ICHEPAP 2023)

SINP, Kolkata

Triumph of Standard Model

Newest fundamental particle discovered: Last missing piece in standard model (SM)

Triumph of Standard Model

Newest fundamental particle discovered: Last missing piece in standard model (SM)

Precision measurement of plethora of processes → In general, good agreement with SM prediction

Triumph of Standard Model

Newest fundamental particle discovered: Last missing piece in standard model (SM)

Nature 607 (2022) 60-68

Standard model predictions match data very well for Higgs production & decay also 2/23

Precision measurement of plethora of processes → In general, good agreement with SM prediction

R(D*)

HFLAV SM Prediction

0.2

 $R(D) = 0.298 \pm 0.004$

 $R(D^{*}) = 0.254 \pm 0.009$

0.25

Limitations of Standard Model

Dark matter

'Naturalness' of Higgs mass

3/23

Searches for resonances decaying to Higgs boson(s)

<u>VH final state:</u>

HH/YH final state:

- $\begin{array}{l} X \rightarrow HH \rightarrow WWW / WW\tau\tau / \tau\tau\tau\tau \ (multilepton) \ \ JHEP \ 07 \ (2023) \ 095 \\ X \rightarrow HH \rightarrow 2b \ 2W \ (resolved) \ \ CMS-PAS-HIG-21-005 \\ X \rightarrow HH \rightarrow 2b \ 2W/2\tau \ (boosted) \ \ JHEP \ 05 \ (2022) \ 005 \end{array}$

Searches for resonances decaying to Higgs boson(s)

<u>VH final state:</u>

$A {\rightarrow} ZH {\rightarrow} l l \tau \tau$

Final states considered:

<mark>ee</mark> + eτ,

 $ee + \mu \tau_{\mu}$

 $ee + \tau_h \tau_h$

ее + еµ

 $\mu\mu + e\tau_{\mu}$

 $\mu\mu + \mu\tau_{\mu}$

 $\mu\mu + \tau_{h}\tau_{h}$

μμ + <mark>e</mark>μ

- Irreducible background $(ZZ \rightarrow 4l, ttZ, WWZ, WZZ, ZZZ) \leftarrow$ from simulation
- Reducible background (jet faking as lepton)

No significant deviation over predicted background

Phys. Rev. D 105 (2022) 032008

$W' \rightarrow WH \rightarrow Ivbb$

- Background processes primarily from simulation \rightarrow smoothened / modeled with functional forms

Decay mode:

CMS

 $W \rightarrow l v + H \rightarrow b b$

Final states considered:

```
1 muon/electron + 1 large (AK8) jet + p_T^{miss}
```

- bb tagging of AK8 jet (H candidate) using BDT

JINST 13 (2018) P05011

Multiple event categories used:

- Δy (W,H) <=1 (LDy) or > 1 (HDy)

- 2-prongness of H candidate jet: Mass-decorrelated $\tau_{21} < 0.5$ (high-purity) >= 0.5 (low-purity)

Analysis also explored WW, WZ final states

Phys. Lett. B 844 (2023) 137813

$Z \to (W/Z) H \to qqbb$

- Background estimated from data by fitting nonresonant (QCD) & resonant (W/Z+jets) in 3 dimensions: m_{J1}^{SD} , $m_{VV}^{SD} \rightarrow$ Constrained using jet mass sidebands

Z(W) Q Drell-Yan production

Decay mode:

Z'(W')

 $W/Z \rightarrow q q + H \rightarrow b b$

Final states considered:

- 2 large (AK8) jets

→ bb- & qq-tagging of AK8 jets using deep neural networks (DeepAK8) w/ mass decorrelation
JINST 15 (2020) P06005

Multiple event categories used:

- Δy (W/Z,H) <=1 or > 1

- Using DeepAK8 scores

7/23 Analysis also explored WW, WZ final states

Phys. Lett. B 844 (2023) 137813

$Z \to (W/Z) H \to qqbb$

- Background estimated from data by fitting nonresonant (QCD) & resonant (W/Z+jets) in 3 dimensions: m_{J1}^{SD} , $m_{VV}^{SD} \rightarrow$ Constrained using jet mass sidebands

Z(W) Q Drell-Yan production

Decay mode:

Z'(W')

 $W/Z \rightarrow q q + H \rightarrow b b$

Final states considered:

- 2 large (AK8) jets

→ bb- & qq-tagging of AK8 jets using deep neural networks (DeepAK8) w/ mass decorrelation JINST 15 (2020) P06005

Multiple event categories used:

- Δy (W/Z,H) <=1 or > 1

- Using DeepAK8 scores

7 / 23 Analysis also explored WW, WZ final states

Phys. Lett. B 844 (2023) 137813

 $\overline{\mathbf{q}}$

$Z \rightarrow (W/Z) H \rightarrow qqbb \ (contd \ ...)$

- Background estimated from data by modeling w/ parametric functions in 3 dimensions: $m_{J_1}^{SD}$, $m_{VV}^{SD} \rightarrow$ Constrained using jet mass sidebands

5 6 m^{AK8} [GeV]

2

Analysis is not sensitive to VBF production yet

Decay mode:

VBF production

 $W/Z \rightarrow q q + H \rightarrow b b$

Targeting VBF production w/ additional conditions:

- Δη (j,j) > 4.5

- m_{ii} > 800 GeV

 $j \leftarrow AK4$ jet (not overlapping w/ V & H candidates)

^₅ Summary plots (W'→VV/VH)

Interpretation performed in heavy-vector triplet models for scenarios with suppressed V'→ fermion couplings

Pappadopulo, Thamm, Torre, Wulzer (2014)

Drell-Yan production

VBF production

- Comparable sensitivity between W' \rightarrow WZ & W' \rightarrow WH searches

- WH search offers best senstivity for W' production via VBF at very high mass

CMS B2G Diboson Summary plots

Summary plots (Z'→VV/VH)

Interpretation performed in heavy-vector triplet models for scenarios with suppressed V'→ fermion couplings Pappadopulo, Thamm, Torre, Wulzer (2014)

Drell-Yan production

VBF production

- Comparable sensitivity between $Z' \rightarrow WW \& Z' \rightarrow ZH$ searches

- ZH search offers best senstivity for Z' production via VBF at very high mass

JHEP 11 (2021) 057

$X \rightarrow YH \rightarrow bb\tau\tau$

<u>Dominant backgrounds:</u>

Real T: DY / VV/ tt $\rightarrow \tau\tau$ Jet faking as τ_{h}

- Separate multiclass neural network (NN) trainings with multiple (clusters of) signals + background processes
- NN discriminators used to extract signal & control background shapes

← estimated from data

No significant excess observed on 2-D mass plane

000000

000000

Y-candidate ParticleNet score 860 60 87 001

0.8

0.6

0.0 ⊾ 0.0

2 AK8 jets

Final states considered:

- Graph-neural network based

Multijet

VS3

VS4

0.6

0.8

CMS Simulation

jet tagging boost signal sensitivity

VS1

VS2

Phys. Lett. B 842 (2023) 137392

$X \rightarrow YH \rightarrow bbbb$ (boosted)

Multijet production in QCD \leftarrow estimated from data

tt \leftarrow estimated from simulation + data-based correction

CMS 138 fb⁻¹ (13 TeV) 5 Mγ[GeV] → bbbb) [fb] Observed for NMSSM Observed for TRSM 600 500 . HY ↓ 400 300 on $\sigma(pp \rightarrow X$ 200 100 1.5 2.5 3 3.5 4 2 M_X[TeV]

> Search is sensitive to allowed parameter spaces in multiple models :)

4000

M_{JJ} [GeV]

Multiple signal regions to cover wide range X & Y masses

1.0

Events/bin

(13 TeV)

SR

SB

0.98

M_X=1600 GeV M_Y=90 GeV

SR2

SB2

0.94

H-candidate ParticleNet score

12/23

Final states considered:

2 isolated photons + 2 (b-tagged) AK4 jets

$X \rightarrow HH/YH \rightarrow bb \gamma\gamma$

Dominant backgrounds:

- y+jets, yy+jets, production in QCD
- \leftarrow reduced using BDT trained in multiple exclusive regions targeting different m_{y} - m_{y} ranges
- + estimated with functional forms fitted using data
- Resonant ttH(\rightarrow yy) background reduced using neural network
- $\tilde{m}_{\mathrm{X}} = m_{\gamma\gamma\mathrm{jj}} \left(m_{\gamma\gamma} m_{\mathrm{H}}\right) \left(m_{\mathrm{jj}} m_{\mathrm{Y}}\right)$ * X candidate mass reconstruction using

Signal extraction using 2D mass distributions $(m_{ii} - m_{yy})$ in regions defined by BDT scores

$X{\rightarrow}HH/YH \rightarrow bb~\gamma\gamma~(contd~...)$

$X{\rightarrow}HH/YH \rightarrow bb~\gamma\gamma~(contd~...)$

Excess observed at m_x, m_y = 650, 100 GeV ← 3.8 (2.8) local (global) significance

CMS HIG X \rightarrow Yh Summary Plots Summary plots (X \rightarrow YH)

X mass: < 1 TeV

X mass: >= 1 TeV

Complementary sensitivity in analyses targeting different final states

$X \rightarrow HH \rightarrow bbWW$ (resolved + semi-boosted)

Final states considered:

- $H \rightarrow WW^* \rightarrow 2$ leptons + MET / 1 lepton + jets + MET
- $H \rightarrow bb \rightarrow 2$ small-radius jets / 1 large-radius jet

Background estimation:

Data-driven approach for particular backgrounds:

- 1 lepton channel: fake lepton background
- 2 lepton channel: Drell-Yan + jets background

All other background processes estimated using simulation

<u>Deep neural network training:</u>

- separate signal & background
- score used to extract signal

$X \rightarrow HH \rightarrow bbWW$ (resolved + semi-boosted)

Final states considered:

- $H \rightarrow WW^* \rightarrow 2$ leptons + MET / 1 lepton + jets + MET
- $H \rightarrow bb \rightarrow 2$ small-radius jets / 1 large-radius jet

Background estimation:

Data-driven approach for particular backgrounds:

- 1 lepton channel: fake lepton background
- 2 lepton channel: Drell-Yan + jets background

All other background processes estimated using simulation

<u>Deep neural network training:</u>

- separate signal & background
- score used to extract signal

Training performed separately for single- and di-lepton final states

Model-independent constraints placed on spin-0 CP-even resonance (also on spin-2 resonances)

Summary plots (X \rightarrow HH)

Constraints on spin-0 Radion

Constraints on spin-2 Graviton

Nice complementarity between analyses targeting

- resolved and boosted topologies
- different final states

18 / 23

Summary plots (X \rightarrow HH/VV)

Constraints on spin-0 Radion

Constraints on spin-2 Graviton

Comparable sensitivity in analyses targeting $X \rightarrow HH \& X \rightarrow VV$ decays

Summary & Outlook

• Presented summary of searches by CMS experiment for resonances decaying to at least one Higgs boson

 $A \rightarrow ZH$

 $V' \rightarrow VH$

 $X \to \ HH$

 $X \to YH$

- Multiple analyses discussed targeting different topologies and final states
 - Resolved vs boosted
 - Final states with: Electrons, Muon, Taus, Photons, Small-radius / Large-radius jets
- Some local excesses are observed

• Looking forward to share new results w/ Run-3 data 'soon' !!

Summary & Outlook

• Presented summary of searches by CMS experiment for resonances decaying to at least one Higgs boson

 $A \rightarrow ZH$

 $V' \rightarrow VH$

 $X \to \, HH$

 $X \to YH$

summarized in a review article!

All these results are being

- Multiple analyses discussed targeting different topologies and final states
 - Resolved vs boosted
 - Final states with: Electrons, Muon, Taus, Photons, Small-radius / Large-radius jets
- Some local excesses are observed

• Looking forward to share new results w/ Run-3 data 'soon' !!

Summary & Outlook

20/23

• Presented summary of searches by CMS experiment for resonances decaying to at least one Higgs boson

 $A \rightarrow ZH$

 $V' \rightarrow VH$

 $X \to \, HH$

 $X \to YH$

- Multiple analyses discussed targeting different topologies and final states
 - Resolved vs boosted
 - Final states with: Electrons, Muon, Taus, Photons, Small-radius / Large-radius jets
- Some local excesses are observed

• Looking forward to share new results w/ Run-3 data 'soon' !!

Teşekkür ederim תודה Hvala עסטקע Evxapıotá منشكرم Dankon Xbana Tak Gracias Grazie 謝謝 شكراك Sağol Danke Thank you Merci C難G學 Tack Cnacubo Obrigado 감水をしして Köszönöm Dank u Cnacubi 有り難う 謝谢 Благодаря Asante धन्यनाद ありがとう Terima kasih Mulţumesc Dank u Kiitos Dziękuję + ধ্নাবাধ

All these results are being summarized in a review article!

Extra Material

$A \rightarrow ZH \rightarrow II/vvbb$

Decay mode:

 $Z \rightarrow 11 / vv + H \rightarrow b b$

Final states considered:

0/2 leptons + 1/2/3 b-tags

- Use of kinematic and angular information to reduce bkg - Background primarily from simulation + normalization extracted from multiple control regions $A \rightarrow Zh \rightarrow (\nu\nu, II)bb$ 35.9 fb⁻¹ (13 TeV) Events 10³ • Data CMS Z(vv) + jets Z(vv) + b01. 2 b tag, signal region $Z(vv) + b\overline{b}$ W(lv) + jets t+X VV. VH Fit unc. Pre-fit 🌌 m_A = 800 GeV $5_{LLA} = 0.1 \text{ pb}$ 600 800 900 1000 1100 1200 1300 1400 1500 500 700 m^{Zh}_T (GeV) 35.9 fb⁻¹ (13 TeV) $A \rightarrow Zh \rightarrow (vv,II)bb$

Some excesses in recent times seen by CMS

Low-mass di-photon search $(\phi \rightarrow \gamma \gamma)$

Some excesses in recent times seen by CMS

arXiv: 2310.01643

Some excesses in recent times seen by CMS

CMS-PAG-HIG-20-002

arXiv: 2310.01643