Searching for top squarks from the landscape at HL-LHC

Juhi Dutta University of Oklahoma

based on *Phys.Rev.D* 108 (2023) 7, 075027 with H.Baer, V.Barger, D.Sengupta, K.Zhang

December 12, 2023

Supersymmetry, in a nutshell.

- Special symmetry providing a super partner to SM particles differing by spin-1/2.
- Resolves naturalness problem.
- R-parity, a discrete symmetry, when conserved provides a dark matter candidate.
- Gauge coupling unification.
- Minimal extensions also address neutrino masses.

Motivation

- third generation squarks around ~450 GeV.
- term on the right-hand-side of:

$$\frac{m_Z^2}{2} = \frac{m_{H_d}^2 + \Sigma_d^d - (m_{H_u}^2 + \Sigma_u^u) \tan_{\beta}^2)}{\tan_{\beta}^2 - \mu^2} - \mu^2$$

Mass	BG/DG	Δ_{EW}
μ	$<350~{\rm GeV}$	$<350~{\rm GeV}$
$m_{ ilde{g}}$	${<}400-600~{\rm GeV}$	$< 6 { m TeV}$
$m_{ ilde{t}_1}$	$<\!450~{ m GeV}$	$<3 { m TeV}$
$m_{\tilde{q},\tilde{\ell}}$	$< 550 - 700 { m GeV}$	< 10 - 30 Te

• Early estimates of naturalness \implies stringent upper limits on gluinos and

- More conservative measures of naturalness: Δ_{EW} , the ratio of the largest

V Limits on particles for 3% Δ_{BG} fine-tuning and for $\Delta_{EW} \leq 30$

Baer, et.al, 2202.11578

Current Status from LHC

MSSM from the landscape

- Supersymmetric models with low electroweak fine-tuning are expected to be more prevalent on the string landscape than fine-tuned models.
- Motivated by Weinberg's anthropic solution to the cosmological constant, one tries to address the origin of the SUSY breaking scale in the string landscape where 10⁵⁰⁰ vacua solutions arise from compactification from 10 to 4 spacetime dimensions.
 Weinberg, Phys. Rev. Lett. 59, 2607
- Douglas et.al, proposed a probabilistic view of naturalness, *stringy naturalness,* by identifying the statistical trends for the many landscape vacua solution we are likely to be in.
 - Douglas, Comptes Rendus Physique 5 (2004) 965–977

Typical spectra for low $\,\Delta_{EW}$

6

Probability distribution for the lightest CP-even Higgs mass.

$$m_h^2 \simeq m_Z^2 \cos^2 2\beta + \frac{3g^2}{8\pi^2} \frac{m_t^4}{m_W^2} \left[\ln \frac{m_{\tilde{t}}^2}{m_t^2} + \frac{x_t^2}{m_{\tilde{t}}^2} \left(1 - \frac{x_t^2}{12m_{\tilde{t}}^2} \right) \right]$$

Probability distribution for the mixing in the stop sector.

Properties of the Stop Sector from the landscape

Probability distribution of the lightest stop mass.

The lightest stop mass = 1-2.5 TeV and mostly right-handed.

Also consistent with the lightest CP-even Higgs mass~125 GeV.

Variation of the cosine of the stop mixing angle with mass of the lightest stop.

$$\tilde{t_1} = \cos \theta_t \tilde{t_L} - \sin \theta_t \tilde{t_R}$$

8

Parameters	Benchmark point	
<i>m</i> ₀	5 TeV	
$m_{1/2}$	1.2 TeV	
A_0	-8 TeV	
aneta	10	
μ	250 GeV	
m_A	2 TeV	
m _ĝ	2830 GeV	
$m_{\tilde{t}_1}$	1714 GeV	
$m_{\tilde{t}_2}$	3915 GeV	
$m_{\tilde{\chi}_1^{\pm}}$	261.7 GeV	
$m_{\tilde{\chi}_{2}^{\pm}}$	1020.6 GeV	
$m_{\tilde{\chi}_{1}^{0}}^{\chi_{2}^{0}}$	248.1 GeV	
$m_{\tilde{\chi}_{2}^{0}}^{\chi_{1}^{0}}$	259.2 GeV	
$m_{\tilde{\chi}_{3}^{0}}$	541.0 GeV	
$m_{\tilde{\chi}_{A}^{0}}$	1033.9 GeV	
m _h	124.7 GeV	

m_h	$124.7~{\rm GeV}$
$\Omega^{std}_{ ilde{\chi}_1} h^2$	0.016
$BR(b ightarrow s \gamma) imes 10^4$	3.1
$BR(B_s ightarrow \mu^+ \mu^-) imes 10^9$	3.8
$\sigma^{SI}(ilde{\chi}_1^0,p)~(ext{pb})$	$2.2 imes 10^{-9}$
$\sigma^{SD}(ilde{\chi}^0_1,p)~(ext{pb})$	$2.9 imes10^{-5}$
$\langle \sigma v \rangle _{v \to 0} \ (\mathrm{cm}^3/\mathrm{sec})$	$1.3 imes10^{-25}$
Δ_{EW}	22

- Lightest stop, mostly right-handed, \Longrightarrow decays to $b\widetilde{\chi}_{1}^{\pm}, t\widetilde{\chi}_{1}^{0}, t\widetilde{\chi}_{2}^{0}$
- Signal topologies: $tb + E_T$, $tt + E_T$, $bb + E_T$
- Key SM backgrounds: bbZ, ttZ, ttW, single top, tt suppressed using highly boosted top-jets $(p_T > 400, E_T > 400GeV, H_T > 1.4TeV,$ $L_T > 1.8 TeV, \min(m_T(b_1, E_T), m_T(b, E_T)) > 175.0,$ $\Delta_{\Phi}(b, E_T) > 40^{\circ}, \Delta_{\Phi}(J, E_T) > 30^{\circ} \text{ for } tb + E_T$ channel. Similar cuts for the other two channels.
- Key kinematic variable for discrimination between signal and background m_{T_2} , sets combined reach of stops 1.7 TeV at 5 σ and 2 TeV, at 2 σ , covering most of the region allowed from the string landscape!

Distribution for m_{T_2} in the tb + MET final state.

Summary

- String landscape provides a way to understand origin of the SUSY breaking scale motivated from Weinberg's cosmological constant solution.
- The MSSM considered a low-energy EFT consistent with the ABDS window to ensure the atomic principle.
- Stops predicted within 1-2.5 TeV range and consistent with the 125 GeV Higgs.
- Mostly right-handed stops lead to tb
- Reach for stops upto 1.7 TeV at 5σ and 2.0 TeV at 2σ , covering almost all of the allowed region predicted by the landscape at HL-LHC!

$$P + E_T, tt + E_T, bb + E_T.$$

Thank You

Backup

Discovery limits on stop pair production

Significant reach for light stops (~2 TeV at 95% CL) at HL-LHC.

Measures of Naturalness

• Barbieri-Guidice: p_i are the fundament

 p_i are the fundamental parameters of the theory

1

$$\frac{\ln m_Z^2}{\partial \ln p_i} \bigg| = \bigg| \frac{p_i}{m_Z^2} \frac{\partial m_Z^2}{\partial p_i} \bigg|$$

Barbieri et.al, Nucl. Phys. B306 (1988) 63–76}

Guidice et al.hep-ph/9507282