Dark matter searches using direct detection techniques and their future prospects

Shawn Westerdale ICHEPAP2023 13 December, 2023

Bing AI, draw a picture of someone searching for dark matter

Riding in the Dark Matter Wind Source: Symmetry Magazine – Artwork by Sandbox Studio, Chicago with Corinne Mucha

WIMP

GYGNUS

∭-

WIMP

"IMP

TT

.

What signals do we expect?

For the "standard WIMP" search...

Background sources: Environmental

Above ground:

Material activation \rightarrow Minimize exposure High event rate \rightarrow Go deep underground

Background sources: Environmental

Underground ground:

Cosmogenic neutrons (e.g. muon spallation) \rightarrow Muon veto Atmospheric and solar neutrino CEvNS \rightarrow Directionality? Annual modulation?

Ciaran A. J. O'Hare Phys. Rev. Lett. 127, 251802

Ciaran A. J. O'Hare Phys. Rev. Lett. 127, 251802

Ciaran A. J. O'Hare Phys. Rev. Lett. 127, 251802

Sources of background: Radiogenic

PMT

(b)

Chermal Bath

T-Sensor

 \sim

Crystal Target

Scintillation

ANAIS (Nal), COSINE (Nal). DAMA (Nal), DEAP-3600 (LAr), PICOLON (Nal) SABRE (Nal)

(d)

PMT

Gas Phase

Liquid

Target

eNT

Detectors that utilize two channels can compare both in order to achieve particle identification, often at the cost of a higher energy threshold

Sensitivity to lighter dark matter candidates requires detectors that produce detectable quanta via lower-energy processes - e.g. superconductors, superfluid helium

Si). Edelweiss

(Ge) [Phonon

Heat

sensors

NEWS-G...

[Ionization counters, TPCs,

CCDs, semiconductors]

Ionization

Nal(TI) annual modulation searches

DAMA/LIBRA (LNGS, Italy): 250 kg NaI(TI) crystals over 20 yrs. Modulation seen at 13.4σ in 1–6 keV

- **ANAIS 112** (Canfranc, Spain): 113 kg Nal(Tl), in 5 yrs. Incompatible w/ DAMA at 3.3σ in 1–6 keV.
- **COSINE 100** (Yangyang, South Korea): 61.3 kg Nal(TI) in liquid scintillator veto over 2.8 yrs. No modulation evidence, best-fit amplitude: 0.0067±0.0042 cts/(day·kg·keV) in 1–6 keV. Growing 200 kg of crystals for COSINE 200
- **SABRE** (LNGS, Italy + SUPL, Australia): Prototype at LNGS w/ ultra-pure Nal(TI) underway. Compare modulation in N+S hemispheres controls seasonal effects. Radiopurity competitive w/ DAMA
- **PICOLON** (Kamioka, Japan): Nal(TI) in prep, to be submerged in Kamland scintillator
- **COSINUS** (LNGS, Italy): Cryogenic Nal(TI) scintillator+bolometer, in prep. Will use light+heat to discriminate electronic and nuclear recoils

Crystal Target

Gaseous TPCs and directionality

Due to the lower density of gaseous TPCs, ionization tracks from nuclear and electronic recoils are long enough to be measured, allowing directionality to be inferred. Track density and electron diffusion can inform particle identification. Directionality can help suppress neutrino backgrounds.

- **CYGNO** (LNGS, Italy): 1 m³ He demo. being prepared. Will follow w/ 30-100 m³ detector
- **DM-TPC** (MIT, USA): 150 g CF₄ low-pressure TPC, in R&D and prototyping phase
- **DRIFT-IId** (Boulby, UK): 24 g of CS₂, CF₄, or O₂. Successfully demonstrated, plans to scale up
- **NEWAGE** (Kamioka, Japan): 10 g off CF_{4.} Successfully demonstrated, plans to scale up
- **NEWS-G** (SNOLAB, Canada): 283 g of Ne+CH₄ (and others) Spherical Proportional Counters; low-threshold, non-directional DM search

Cryogenic crystals, semiconductors

Low-energy cryogenic detectors using silicon and germanium targets for bolometers. These targets typically scintillate or produce detectable ionization charges, allowing them to achieve particle identification and low energy thresholds

- **SuperCDMS** (SNOLAB, Canada): 36 kg Ge and Si phonon and ionization detectors (iZip & HV)
- **CDEX-10** (CJPL, China): 10 kg p-type point contact HPGe ionization detectors, collecting data
- **CRESST-III** (LNGS, Italy): 23.6 g CaWO₄ crystal scintillating bolometers
- **EDELWEISS-III** (LSM, France): 21 kg Fully Inter-Digitized (FID) Ge bolometer w/ ionization readout

EDELWEISS 20 **bolometer**

CCD-based detectors

Charge-coupled devices (CCDs) can record the ionization track of a recoiling particle, allowing for particle identification and low-threshold searches for electron-coupled DM

- **DAMIC-M LBC** (LSM, France): 18 g CCDs. First search performed. Plans to scale to 700 g
- **SENSEI** (Fermilab, USA): 2 g high-resistivity skipper-CCDs with reduced noise. Plans to scale to 100 g at SNOLAB
- **OSCURA** (LNGS, Italy): 10 kg skipper-CCDs, in R&D and plannign phase

Phase-change detectors

By superheating/cooling the target to the edge of a phase transition, heat generated by a nuclear recoil can nucleate a bubble without backgrounds from electronic recoils

- **PICO-40L** (SNOLAB, Canada): 57 kg of C₃F₈ (freeon) in a bubble chamber, currently being commissioned. Focus on spin-dependent DM
- **SBC-LAr10** (SNOLAB, Canada): 10 kg xe-doped LAr bubble chamber using scintillation to veto high-energy nuclear recoils (α's, neutrons) with a 100 eV threshold. Prototype being commissioned
- **SNOWBALL:** a future supercooled water-target detector, forming ice after DM scatters on ¹H. Currently in R&D phase

Noble liquid scintillators

Noble liquids (e.g. LAr and LXe) are readily scaled to large sizes and scintillate very efficiently, making them well-suited for tonne-scale detectors and larger, and can be made extremely radio- and chemically pure

DEAP-3600 (SNOLAB, Canada): 3.3 tonnes of LAr, currently offline for upgrades. Electronic recoil background suppression by ~10¹⁰ using pulse shape discrimination

XMASS-I (Kamioka, Japan): 800 kg of LXe, completed operations in 2019

LXe TPCs: LZ

LXe TPCs: XENONnT

LXe TPCs: PandaX

LAr TPCs: DarkSide-50

LAr TPCs: DarkSide-50

Pioneered use of low-radioactivity underground argon (UAr)

LAr TPCs: DarkSide-50, S2-only

LAr TPCs: DarkSide-50, S2-only

DarkSide.130, 101002 (2023)

Global Argon Dark Matter Collaboration

Global Argon Dark Matter Collaboration

50 tonnes of UAr in a 30 tonne UAr + Gd-PMMA neutron veto, in a 650 tonne AAr outer muon veto **Planned exposure:** 200 t×yr

MiniCLEAN

DarkSide-20k

Argo: The ultimate LAr detector to push into the neutrino fog

R.R.R.R.R.R.

Timeline: Early 2030's at SNOLAB **Mass:** ~300 tonnes **Rich broader physics program:**

Supernova neutrino sensitivity to CEvNS & 40 Ar(v_e,e⁻) 40 K^{*}

UAr: Low radioactivity argon

NGS

Urania

UAr extraction plant in Colorado (same as DS-50)

³⁹Ar reduction: at least 1400×

Extract: 250 kg/day at 99.99% purity

Seruci-I Seruci-II

1400× 99.99% purity

SNOLAB

Aria

UAr purification in Sardinia

350 m-tall cryogenic distillation column

Chem. purification: 10³× reduction at O(1 tonne/day)

³⁹Ar depletion: 10× reduction at O(10 kg/day)

DarkSide Collaboration. "Separating ³⁹Ar from ⁴⁰Ar by cryogenic distillation with Aria for dark matter searches". Eur.Phys.J.C 81, 359 (2021)

DarkSide Collaboration. "Measurement of isotopic separation of argon with the prototype of the cryogenic distillation plant Aria for dark matter searches". Eur. Phys. J. C 83, 453 (2023)

ARGUS

Long-term UAr storage at SNOLAB

DArT in ArDM

Small-batch ³⁹Ar assay facility in Canfranc Lab, Spain

Sensitivity: depletion factor U.L. of 6×10⁴ at 90% C.L. in 1 week of counting time

DarkSide Collaboration. "Design and construction of a new detector to measure ultra-low radioactive-isotope contamination of argon". JINST 15 P02024 (2020)

DarkSide-LowMass: Optimized for S2-only analyses

Active (fiducial) mass: 1.5 (1) tonnes underground argon

Better 1e⁻ resolution: Stronger electroluminescence field and more uniform extraction grid using tense wire grid

Additional ³⁹Ar depletion: 10–100× relative to DS-50 w/ Urania improvements and isotopic purification in Aria

Decreased γ activity: Low-radioactivity SiPMs and stainless steel from DS-20k, ultrapure acrylic from DEAP

Two-fold \gamma veto: Additional 10× suppression of γ backgrounds with PDM buffer veto and bath veto, which tag γ 's coming from the two dominant sources (photoelectronics and cryostat) *en route* to TPC

Lower spurious e⁻ background rate: Through improved argon purity, and targeted removal of most important impurities, pending ongoing R&D

Cryostat immersed in water tank (not shown)

Global Argon Dark Matter Collaboration Phys. Rev. D 107, 112006 (2023)

DarkSide-LowMass: Sensitivity to the v fog in 1 tonne year exposure

 $m_{\gamma} [MeV/c^{2}]$

in freeze-in and freeze-out production mechanisms

Current and future heavy DM searches

41

Ultra-heavy dark matter searches

arXiv:2203.06508

42

Current and upcoming technology is paving the way for a wide range of exciting direct detection searches for dark matter from masses spanning the keV to Planck scale

Future detectors will use a ride range of technologies with far-reaching possibilities

Beyond searches for dark matter, these detectors will be powerful neutrino detectors, with sensitivity to supernova, solar, and reactor neutrinos END