# Flavor physics results from LHCb and Belle II

## Biplab Dey

#### (including results from LHCb, Belle(II) and BaBar)



Biplab Dey (ELTE)

Flavor physics @ LHCb and BelleII  $13^{th}$  December 2023 1/51

# THE (QUARK) FLAVOR SECTOR



- $\mathcal{L}_{\text{gauge}}$  has huge flavor-degeneracy between the 3 generations.
- Global symmetry:  $U(1)_L \times U(1)_B \times U(1)_Y \times U(3)_F^5$ .



Biplab Dey (ELTE)

• Flavor-degeneracy is massively broken by the Higgs Yukawas resulting in strong hierarchy in quark masses.

## CKM MATRIX AND CP VIOLATION

- 10 SM parameters in the quark sector: 6 quark masses, 3+1 CKM parameters.
- Strong hierarchy. Weak mixing between generations.

• Single phase  $(\equiv \gamma)$  in  $V_{ub}$  only source of CP violation in the SM.

•  $b \rightarrow d$ : "the" UT.

Flavor physics @ LHCb and BelleII

 $-A\lambda^3$ 

3/51

 $V_{ub}^* V_{ud} + V_{cb}^* V_{cd} + V_{tb}^* V_{td} = 0$ 

 $A\lambda^{3}(\rho+i\eta) = A\lambda^{3}(1-\rho-i\eta)$ 

The UT

### GLOBAL FITS SITUATION





- Tremendous success of the CKM paradigm from *B*-factories.
- Largest CPV observed in beauty, but also in strange and charm.
- Baryogengesis problem remains: probe CPV in very rare processes.
- Leptogenesis: CPV in neutrino mixing? Unlike  $V_{\rm CKM}$ , seems to have strong mixing.

#### FLAVOR AS A DISCOVERY TOOL



- Long history of flavor as an "indirect" probe for new heavy particles:
  - weak nuclear  $\beta$  decay  $\Rightarrow$  heavy W/Z
  - $-K_L^0 \rightarrow \mu^+ \mu^-$  GIM suppression  $\Rightarrow$  charm
  - $B^0$ -mixing at ARGUS  $\Rightarrow$  heavy top
  - SM-like  $\mathcal{B}(B_s^0 \to \mu^+ \mu^-)$  at the LHC  $\Rightarrow$  tight limits on MSSM/SUSY
- Even if  $\Lambda_{\rm NP} \gg$  TeV, precision flavor can probe the "desert" via rare loop-mediated processes.

# $e^+e^-$ VS pp Colliders



- Running at  $e^+e^- \to \Upsilon(4S) \to B\overline{B}$ . Low background,  $\epsilon_{\text{trigger}} \sim 100\%$ .  $\mathcal{O}(10^9)B^{0,\pm}$ . BelleII  $\to \mathcal{O}(10^{10})$ .
- Excellent for electrons, neutrals, neutrinos, inclusive and flavor-tagging power.





- $\mathcal{O}(10^{11})B_{(s)}^{0,\pm}$ . UpgradeII  $\rightarrow \times 100$ . Busy environment, initial partonic 4-mom unknown.
- Excellent for exclusive muonic/hadronic modes, PID, vertexing, all *b*-hadron species  $(\Lambda_{\rm b}^0, B_s^0, B_c^+...)$
- $\mathcal{O}(10^{12})B^{0,\pm}_{(s)}$ , but very high background. No PID.
- Excellent tracking. Limited *b*-trigger (low  $p_T$ ) bandwidth; "B-parking" at CMS (10<sup>10</sup> *b*-hadron pairs triggered just in 2018).

Biplab Dey (ELTE)

Flavor physics @ LHCb and BelleII 13<sup>th</sup> December 2023

6/51

### $e^+e^-$ VS pp colliders: sample events

 $pp \to X_b B_s^0 X$  $B_s^0 \to \mu^+ \mu^-$ 



**LHC** pp collisions have background from  $b\bar{b}$  hadronization, underlying event, and pileup

 $\frac{\textbf{B-factories}}{\text{Clean } e^+e^- \text{ collisions only}}$ produce two B mesons (for the most part)

 $e^+e^- 
ightarrow B^+_{ ext{tag}} B^-_{ ext{sig}} B^-_{ ext{sig}} B^-_{ ext{rec}} 
ho^0 \mu^- 
u_\mu$ 



• Triggering is the key at LHCb. L0 (hardware) trigger removed in Upgrade Ia (Run3) ⇒ flexible software (GPU+CPU) trigger.

## VERTEXING AT LHCB





LHCb Upgrade I VeloPix

- At LHC, thanks to the boost, b-hadrons fly  $\sim$  cm. VELO closes in  $\sim 5$  mm to the beamline  $\Rightarrow \sigma_t \sim 45$  fs.
- Can resolve  $\tau \to 3\pi(\nu)$  vertex from the mother *b*-vertex in  $b \to c\tau\nu$ .

## SELECTED PHYSICS RESULTS

Semileptonic *b*-hadron decays

Rare *b*-hadron decays



"b-anomalies"

+



## SELECTED PHYSICS RESULTS



# $|V_{\rm ub}|$ and $|V_{\rm cb}|$

# $|V_{\rm ub}|$ and $|V_{\rm cb}|$ : flagship SM variables

•  $V_{xb}$  play critical roles in the unitarity test of  $V_{\text{CKM}}$ .



•  $\sin 2\beta$  (loop) known to better than 2%. Side opposite is  $|V_{\rm ub}|/|V_{\rm cb}|$ .

• Rare FCNC processes  $\propto |V_{cb}|^2 \left[\frac{|V_{tb}^*V_{ts}|^2}{|V_{cb}|^2}\right] \Rightarrow$  theory uncertainty. Biplab Dey (ELTE) Flavor physics @ LHCb and BelleII 13<sup>th</sup> December 2023 12/51

# $|V_{\rm ub}|$ AND $|V_{\rm cb}|$ : PROCEDURES AND TENSIONS

• Leptonic  $B_{u,c}^+ \to \tau^+ \nu_{\tau}$ : theoretically clean, experimentally hard.



•  $X_{u,c}$  is exclusive  $\{\pi, \rho, \omega, D^{(*)}...\}$ . Or inclusive sum of states.

- Different theory inputs: OPE (inclusive) and FFs (exclusive)
- Exclusive systematically lower than inclusive for both  $|V_{ub}|$  and  $|V_{cb}|$  by  $\sim 5-10\%$ .
- QCD effects, experimental issues with the normalizations, or NP?



 $13^{th}$ Flavor physics @ LHCb and BelleII December 2023 To tag or not to tag @ *B*-factories

- $e^+e^-/pp \to b\bar{b} \to B_{sig}X_b$ : use information on "other" b or not.
- B(B→X<sub>c</sub>ℓ<sup>-</sup>ν<sub>ℓ</sub>) ~ 10%. Dominant statistics, but at least one missing neutrino ⇒ hadronic tagging at e<sup>+</sup>e<sup>-</sup> machines.



• BF measurements need normalization/control mode. Ensuring that  $\epsilon_{tag}$  cancels between signal/norm modes is challenging.

14/51

#### $|V_{\rm cb}|$ from tagged $B \to D\ell^- \overline{\nu}_\ell$

```
[2311.15071] (\hookrightarrow PRD)
```

• BGL z-expansion fit to 
$$B \to D$$
 form-factors  $f_+$  and  $f_0$  ( $\to$  lattice, time-like)

$$f_i(z) = \frac{1}{P_i(z)\phi_i(z)} \sum_{n=0}^N a_n^i z^n$$
  
rate  $\propto |f_+(w)|^2$ 

• First unbinned non-extended ML 2d fits  $(\cos \theta_{\ell}, q^2)$  to BABAR + FNAL/MILC.  $d\Gamma/dq^2$  from Belle-16 optionally included.

• 
$$\Gamma' = \frac{\left[\int \text{rate}\right]_{\text{FF}}}{|V_{\text{cb}}|^2}$$
.  $|V_{\text{cb}}| = \sqrt{\frac{\mathcal{B}}{\Gamma' \tau_B}}$  from updated HFLAV  $\mathcal{B}$ .



| hadronic tagged                                | $ V_{cb} ^{\mathrm{excl}} \times 10^3$     |
|------------------------------------------------|--------------------------------------------|
| Belle-16 $\mathcal{B}$ ( $B \to D$ BGL)        | $41.02 \pm 0.88 \qquad \epsilon_{\rm tag}$ |
| BABAR-10 $\mathcal{B}$ $(B \to D  \text{BGL})$ | $38.78 \pm 1.11$ $\succ \text{norm.}$      |
| BABAR-19 $(B \rightarrow D^* \text{ BGL})$     | $38.36 \pm 0.90$ ] issue?                  |

### $|V_{\rm cb}|$ from untagged $B \to D\ell^- \overline{\nu}_\ell$ [2210.13143]

• 2019-21(189.2/fb) BelleII data:  $D^+ \to K^- \pi^+ \pi^+$  and  $D^0 \to K^- \pi^+$ .



• From N = 3 BGL fit,  $|V_{cb}| = (38.53 \pm 1.15) \times 10^{-3}$ 

#### 4D UNBINNED ANGULAR ANALYSIS [Prl123, 091801 (2019)]

• Unbinned 4d BGL FF fit, using  $h_{A_1}(1)$  from FNAL/MILC-14.





#### Simultaneous incl+excl $|V_{\rm ub}|$

[PRL131, 211801 (2023)]



 $|V_{\rm ub}|$  and  $|V_{\rm cb}|$  tensions  $B_s^0 \to D_s^{(*)}$ , LHCb

# $|V_{\rm cb}|$ From $B^0_s o D^{(*)-}_s \mu^+ u_\mu$ [Prd 101, 072004 (2020)]

- LHCb can leverage  $|V_{xb}|$  from  $\Lambda_{\rm b}^0$  and  $B_s^0$ , inaccessible at Belle(II). [Not covered today:  $\Lambda_{\rm b}^0 \to p\mu^-\overline{\nu}_{\mu}, \Lambda_{\rm b}^0 \to \Lambda_c^+\mu^-\overline{\nu}_{\mu}.$ ]
- Neutrino(s) accessible up to 2-fold ambiguity. Key discriminant is:  $m_{\rm corr} \equiv \sqrt{m^2 (D_s^{(*)-} \mu^+) + p_{\perp}^2 (D_s^{(*)-} \mu^+)} + p_{\perp} (D_s^{(*)-} \mu^+).$
- Additionally,  $p_{\perp}(D_{(s)}^{(*)-})$  found to be sensitive to decay kinematics.
- Uses  $B^0 \to D^{(*)-} \mu^+ \nu_{\mu}$  as the control modes (Run 1, 3/fb).



# Outlook for $|V_{xb}|$

- Many new results from LHCb/Belle(II) + legacy results from BABAR.
- Issue still unresolved. Several outstanding issues:
  - $|V_{\rm cb}|^{\rm excl}$  from the  $B \to D^{(*)} \ell^- \overline{\nu}_{\ell}$  needs to match (robustly).
  - New FNAL/MILC, HPQCD, JLQCD lattice  $B \to D^*$  FFs show internal disagreements.
  - The  $\mathcal{B}(B \to X_c \ell^- \overline{\nu}_\ell)$  measurement for  $|V_{cb}|^{incl}$  is from 2010's. Needs to be updated.
  - For tagging, the assumption of  $\epsilon_{\text{tag}}$  being independent of the signal-side needs to be better validated.
- "Tensions" (aka QCD) remain. What would it take to move to "anomaly" (aka NP)?

# $b \to c \tau^- \overline{\nu}_{\tau}$

# LEPTON FLAVOR UNIVERSALITY VIOLATION (LFUV)



• If NP is CKM-like, will prefer to couple to the 2nd and 3rd generations.

$$R(X_c) \equiv \frac{\mathcal{B}(H_b \to X_c \tau \nu)}{\mathcal{B}(H_b \to X_c \ell \nu)}$$
$$\ell \in \{e, \mu\}$$

Biplab Dey (ELTE)

Flavor physics @ LHCb and BelleII 13<sup>th</sup> December 2023 22 / 51

**LFUV** in  $b \to c \tau^- \overline{\nu}_{\tau}$   $R(D^{(*)})$  at LHCb

### au reconstruction at LHCB

#### Muonic (BelleII+LHCb)



- Higher statistics
- Same final state as  $B \to D^* \mu \nu$ normalization mode. Many systematics cancel.
- Multiple missing  $\nu$ 's. Infer  $p_B$ using boost approx.  $p_B^{\parallel} \propto p_{\rm vis}^{\parallel}$

Hadronic (LHCb)



- Cleaner selections.
- Normalization mode is  $B \to D^* 3\pi \ (\Lambda_{\rm b}^0 \to \Lambda_c 3\pi).$ Need external BFs as inputs  $(\to \text{systematics}).$
- Better resolutions in the kinematic variables. Two two-fold ambiguities.

 $R(D^{*+})$  hadronic

[PRD 108, 012018 (2023)](Run2, 2015/16) [PRD 97, 072013 (2015)](Run1)

- $\operatorname{Run2}(2015/16)$  data: 40% more stats than previous Run1 result.
- Prompt  $B \to D^* 3\pi$  suppressed by  $\tau$  vertex downstream of B.



• In agreement with SM.

# FIRST $R(D^*)$ AT BELLEII, TAGGED

[Lepton-Photon-23]

• Partial (189/fb) BelleII hadronic tagged dataset. Main discriminant is extra calorimeter energy  $(E_{\text{ECL}}^{\text{extra}})$ .



•  $R(D^*)$  consistent with SM, with 40% better sensitivity compared to Belle2 (w/ comparable dataset).

# FIRST $R(X_c)$ AT BELLEII, TAGGED

#### [2311.07248]





• First *inclusive* measurement of its kind. In agreement with SM predictions ([2207.03432], [1506.08896], [2112.07685]).

Biplab Dey (ELTE)

Flavor physics @ LHCb and BelleII 13<sup>th</sup> December 2023 26 / 51

#### $R(D^{(*)})$ global

# R(D)- $R(D^*)$ GLOBAL



• Many other SL results, consistent with SM:

- LHCb:  $R(J/\psi)$  muonic,  $R(\Lambda_c)$  hadronic,  $D^*$  pol. hadronic.
- BelleII: e/mu ang. asymm  $B \to D^*, R(D_{e/\mu}^*), R(X_{e/\mu}).$

### SELECTED PHYSICS RESULTS



#### Rare b-decays

•  $b \to s(d)$  flavor changing neutral currents: loop-suppressed in SM.





#### Rare b-decays

- $b \to s(d)$  flavor changing neutral currents: loop-suppressed in SM.
- New Physics (NP) can enter both at loop- and tree-levels.



30 / 51

#### EFT TOOLS FOR RARE DECAYS

• Renormalizability requires the  $\mathcal{L}_{SM}$  to have dim  $d \leq 4$  operators.

• Eg.: 
$$m_{\phi}^2 \phi^2$$
,  $m_{\psi} \overline{\psi} \psi \Rightarrow (m_{\phi}/E)^2$ ,  $(m_{\psi}/E)$  UV-safe behavior.

• We can include d > 4 operators if we regard the SM as an low energy effective theory. Comes with a cutoff scale,  $\Lambda$ .

$$\mathcal{L}_{\text{eff}}(x) = \mathcal{L}_{\text{SM}}(x) + \sum_{d>4} \frac{C_i}{\Lambda^{d-4}} \mathcal{O}_i^{(d)}(x)$$

- Amplitudes will have  $(E/\Lambda)^{d-4}$  behavior: bad at high-E, but suppressed at  $E \ll \Lambda$ . Access to heavy  $(\Lambda_{\rm NP})$  fields from NP.
- Relevant for RD: d = 6 operators.  $\mathcal{A}_{\text{eff}} \sim \frac{C_{\text{SM}}}{m_W^2} + \frac{C_{\text{NP}}}{\Lambda_{\text{NP}}^2}$ .

#### Basis of local operators for $b \rightarrow s$ penguins

• (V - A) LH operators consistent with SM symmetries:

$$\begin{aligned} \mathcal{O}_{1}^{u} &= \left(\bar{s}\gamma_{\mu}T^{a}P_{L}u\right)\left(\bar{u}\gamma^{\mu}T^{a}P_{L}b\right) \\ \mathcal{O}_{2}^{u} &= \left(\bar{s}\gamma_{\mu}P_{L}u\right)\left(\bar{u}\gamma^{\mu}P_{L}b\right) \\ \mathcal{O}_{2}^{u} &= \left(\bar{s}\gamma_{\mu}P_{L}u\right)\left(\bar{u}\gamma^{\mu}P_{L}b\right) \\ \mathcal{O}_{1}^{c} &= \left(\bar{s}\gamma_{\mu}T^{a}P_{L}c\right)\left(\bar{c}\gamma^{\mu}T^{a}P_{L}b\right) \\ \mathcal{O}_{2}^{c} &= \left(\bar{s}\gamma_{\mu}P_{L}c\right)\left(\bar{c}\gamma^{\mu}P_{L}b\right) \\ \mathcal{O}_{2}^{c} &= \left(\bar{s}\gamma_{\mu}P_{L}c\right)\left(\bar{c}\gamma^{\mu}P_{L}b\right) \\ \mathcal{O}_{3} &= \left(\bar{s}\gamma_{\mu}P_{L}b\right)\sum_{q}\left(\bar{q}\gamma^{\mu}q\right) \\ \mathcal{O}_{4} &= \left(\bar{s}\gamma_{\mu}T^{a}P_{L}b\right)\sum_{q}\left(\bar{q}\gamma^{\mu}T^{a}q\right) \\ \mathcal{O}_{4} &= \left(\bar{s}\gamma_{\mu}T^{a}P_{L}b\right)\sum_{q}\left(\bar{q}\gamma^{\mu}T^{a}q\right) \\ \end{aligned}$$

•  $\mathcal{O}_{1,2}$  (4-quark tree),  $\mathcal{O}_{3-6}$  (4-quark penguins),  $\mathcal{O}_8$  (gluon penguin)

#### THE THREE DOMINANT CONTRIBUTIONS

• The dominant  $\mathcal{O}_{7,9,10}$  contributions, as a function of  $q^2$ :



• The primed terms are the RH (quark) operators, suppressed in the SM, but can be enhanced in NP scenarios.

### WILSON COEFFICIENTS AND LOCAL FFS

• From SMEFT to weak EFT (WEFT) at  $m_b$  scale:



- The (dimensionless) Wilson coefficients encode the short-distance physics.  $\mathcal{A}(i \to f) = \sum C_n(m_b) \langle f | \mathcal{O}_n(m_b) | i \rangle.$
- The long-distance physics (hadronization) is encoded in the *local* form-factors (lattice, LCSR, etc,.).
- Eg.  $V^{B \to M}_{\mu}(k,q) \equiv \langle M(k) | \bar{s} \gamma_{\mu} P_L b | \overline{B}(q+k) \rangle$  for the vector FFs in *B*-meson decays.

#### Non-local effects

# NON-LOCAL (AKA CHARM LOOP) CONTRIBUTIONS

• Non-local contributions from propagating  $c\overline{c}$  are a problem:



- At leading order, the  $\mathcal{O}_{1,2}$  is factorizable, but leads to strong phases from the resonances (LHCb has measured these).
- Further (soft+hard) gluons lead to *non-factorizable* contributions, that can mimic NP contributions. Need data-driven approaches.

# Electroweak penguins

#### $B \to K \pi \ell^+ \ell^-$

# The Golden channel: $B^0 \to K^{*0} \ell^+ \ell^-$



- Full Run1+2 @ LHCb ~ 10000. Not a rare decay anymore.
- Allows detailed angular analyses to extract binned observables such as  $P'_5$  (theoretically "clean").
- Competitive results also from ATLAS/CMS.
- Higher lumi than LHCb, but B-physics trigger bandwidth and  $K/\pi$  mis-ID (no RICH) are issues .



Biplab Dey (ELTE)

Flavor physics @ LHCb and BelleII

#### NP or QCD effects

# More $B \to V \mu^+ \mu^- \dots$



• CMS has also looked at  $B^+ \to K^{*+} \mu^+ \mu^-$ .

[JHEP 04 124 (2021)]

• Numerous global analyses, different data sub-sets, statistical analyses...





# UNBINNED $B^0 \to K^{*0} \mu^+ \mu^-$

LHCb-PAPER-2023-032  $(\hookrightarrow PRD)$ LHCb-PAPER-2023-033  $(\hookrightarrow PRL)$ 

• Same dataset as published Run1+2016  $q^2$ -binned analysis.

$$\mathcal{A}_{\lambda=0,\parallel,\perp}^{L,R} = \mathcal{N}_{\lambda} \left\{ \left[ (C_9 \pm C_9') \mp (C_{10} \pm C_{10}') \right] \mathcal{F}_{\lambda}(q^2) + \frac{2m_b M_B}{q^2} \left[ (C_7 \pm C_7')_{\mathrm{SM}} \mathcal{F}_{\lambda}^T(q^2) - 16\pi^2 \frac{M_B}{m_b} \mathcal{H}_{\lambda}(q^2) \right] \right\}$$

• Directly extract out (real)  $C_{9,10}^{(\prime)NP}$  from *unbinned* fit.  $\mathcal{F}_{\lambda}(q^2)$  FF's from LCSR + lattice.  $C_i^{\text{SM}}$  from theory.  $\mathcal{H}_{\lambda}$  from z-expansion fit.



• Full rate also includes  $K\pi$  S-wave.

Biplab Dey (ELTE)

Flavor physics @ LHCb and BelleII 13<sup>t</sup>

 $13^{th}$  December 2023

# UNBINNED $B^0 \to K^{*0} \mu^+ \mu^-$

LHCb-PAPER-2023-032  $(\hookrightarrow PRD)$ LHCb-PAPER-2023-033  $(\hookrightarrow PRL)$ 

• Excellent consistency w/ 2020 binned results. Some effect of the LCSR ( $q^2 < 0$ )  $\mathcal{H}_{\lambda}$  info seen in  $S_7$  observable.



- Data still prefers negative  $C_9^{\rm NP}$ , but tension in  $C_9$  reduced to ~ 1.8 $\sigma$  and 1.4 $\sigma$  global.
- Will be extended to full Run 1+2, but significant uncertainty due to FFs (both *P*- and *S*-wave).



Biplab Dey (ELTE)

Flavor physics @ LHCb and BelleII

40/51

 $\Lambda_{\rm b}^0 \to \Lambda(1520) \mu^+ \mu^-$ 

- Broad overlapping  $\Lambda^* \to pK^-$  states.
- Detailed study very challenging: theory+exp.
   → JHEP 02 189 (2023)



- $\Lambda(1405)(\frac{1}{2}), \Lambda(1520)(\frac{3}{2}), \Lambda(1600)(\frac{1}{2}), \Lambda(1800)(\frac{1}{2})$  included.
- Integrated over angles (small interferences as sys.).  $d\Gamma/dq^2$  for  $\Lambda(1520)$  provided. Theory models need to be revisited.



[PRL 131 151801 (2023)] [JHEP 06 108 (2017)]

# $R_{K^{(*)}}$ status at LHCB/ Belle(II)

[PRL 131 051803 (2023)] [PRD 108 032002 (2023)] [PRL 126 161801 (2021)] [2206.05946]

- Very clean theory:  $R_{K^{(*)}} = \frac{\mathcal{B}(B \to K^{(*)} \mu^+ \mu^-)/\mathcal{B}(B \to K^{(*)} J/\psi (\to \mu^+ \mu^-))}{\mathcal{B}(B \to K^{(*)} e^+ e^-)/\mathcal{B}(B \to K^{(*)} J/\psi (\to e^+ e^-))}$
- Electrons hard at LHCb (trigger, brem). "Flutter" in the community from 2022 paper:  $R_K$  found  $3.1\sigma$  from SM.



• BelleII: 1st steps towards  $R_{K^{(*)}}$ . Many other  $R_{X_s}$  analyses ongoing at LHCb, also using  $R_{\phi \to \ell^+ \ell^-}$  as sanity check.

# $B^+ \to K^+ \nu_\ell \overline{\nu}_\ell$ AT BELLEII

s

lo charm

loop poll

[2311.14647] [PRL 127 181802 (2021)]

- Access to 3rd gen. in EWP (also  $B^0 \to K^0 \tau^- \tau^+$ )
- Theory prediction from lattice: 6% precision. Previous best UL at  $1.6 \times 10^{-5}$  at 90% CL.
- $B^+ \to K^+ +$  inv: hard experimentally.
- Conventionally, hadronic tag. New: inclusive tag.
- Data/MC checks from control samples:  $q\overline{q} + B\overline{B}$   $(B \to D^{(*)}(\to K^+X)\ell\nu, B^+ \to K^+K_LK_{L,S}, B^+ \to K^+nn, B^+ \to K^+D^{(*)},$   $B^+ \to K^+[J/\psi(\to \mu\mu)]_{\text{miss}}, B^+ \to \pi^+K^0)$ 
  - Two-step BDT(ITA). ITA/HTA agrees.
  - $\bullet$  ITA: 2.3 $\sigma$  tension w/ BABAR-SL tag.
  - Combined:  $3.5\sigma$  evidence,  $2.7\sigma$  deviation from SM.



 $W^{-}$ 

 $\mathcal{B}_{\rm SM} \sim 5.6 \times 10$ 



# Radiative penguins

# ACCESSING $C_7^{(\prime)}$ AND SEARCH FOR RH CURRENTS

- In the SM, the photon from  $\vec{b} \to \vec{s} \vec{\gamma}$  is almost purely LH. RH current suppressed  $(C'_7 \sim \frac{m_s}{m_b}C_7)$  and is a sensitive NP probe.
- Need angular analysis, to pull out the interferences.
- LHCb probes this in various ways:
  - Very low  $q^2$  angular analysis of  $B^0 \to K^{*0}e^+e^-$  [JHEP 12 081 (2020)]  $+ B_s^0 \to \phi e^+e^- (\to \text{ ongoing}).$
  - Angular analysis of  $B^+ \to K^+ \pi^+ \pi^- \gamma$  [PRL 112 161801 (2014)]
  - TDCPV of  $B^0_s \to \phi \gamma$  [Prl 118 021801 (2017)]
  - TDCPV of  $B^0 \to K^0_{\scriptscriptstyle S} \pi^+ \pi^- \gamma$  ( $\to$  ongoing).
  - Angular analysis of  $\Lambda^0_{
    m b} 
    ightarrow \Lambda^0 \gamma$  [PRD 105 L051104 (2022)]

Photon polarization in  $b \to s \vec{\gamma}$   $\Lambda^0_b \to \Lambda^0 \gamma$ 

 $\Lambda^0_{\rm b}\to\Lambda^0\gamma$ 

[PRD 105 L051104 (2022)] [PRL 123 031801 (2019)]



- Nominally need 3-body  $H_s \to P_1 P_2 P_3$  (defines a coordinate-frame) decay in  $H_b \to H_s \vec{\gamma}$ , to access the photon pol.
- Up-down asymmetry is proportional to  $\lambda_{\gamma}$ (photon pol) via the hadronic current  $\mathcal{J}_{\mu}^{\text{had}}$

•  $\Lambda^0 \to p\pi^-$  is an exception due to the self-analyzing nature of the weak decay. The  $\Lambda^0$  pol. effectively provides the "3rd direction".  $d\Gamma/d\cos\theta \propto (1 - \alpha_A \lambda_\gamma \cos\theta) \Rightarrow$  direct access to  $\lambda_\gamma$ 



## $B^{0,\pm} ightarrow ho^{0,\pm} \gamma$ at Belle+BelleII

[EPSHEP-23]

- Compared to LHCb, Belle(II) has  $\gamma/\pi^0$  separation and better  $E_{\gamma}$  resolution. Also, no xfeed from  $B_s^0$  and  $\Lambda_b^0$  due to hadron mis-id.
- $B \to \rho \gamma$  is a CS  $b \to d$  penguin and large bkgd from  $B \to K^* \gamma$ . Seen at both BaBar and Belle. Accessible also at LHCb.



Simultaneous fit to  $M_{bc}$  $\Delta E, m(\pi\pi)$ 

$$BR(\rho^{+}\gamma) = (12.87^{+2.02+1.00}_{-1.92-1.17}) \times 10^{-7}$$
  

$$BR(\rho^{0}\gamma) = (7.45^{+1.33+1.00}_{-1.27-0.80}) \times 10^{-7}$$
  

$$A_{I} = (14.2^{+11.0+8.9}_{-11.7-9.1}) \%$$
  

$$A_{CP} = (-8.4^{+15.2+1.3}_{+15.3-1.4}) \%$$

Consistent with SM



# LHCB UPGRADES



#### [ $\hookrightarrow$ Brij Jashal's HQL23 talk]

- Ambitious plan to collect 300/fb by end of Run 6.
- Precision timing (10's of ps) to kill pileup.
- Flexible software trigger.
- FTDR approved by LHCC.

Flavor physics @ LHCb and BelleII

49 / 51

#### BelleII Upgrades

[ $\hookrightarrow$  Peter Lewis' HQL23 talk]



#### Outlook



Nima Arkani Hamed Intensity Frontier Workshop'11

# Backup

# (UN)TAGGED FFS AT BELLE(II)

- BelleII, 189/fb, untagged.
- Binned fits in the  $4 \times 1d$ variables.
- Some tension with w > 1FNAL/MILC.



[2310.01170, BelleII untagged] 2310.20286, Belle tagged [PRD108, 012002(2023), Belle tagged]

- Full Belle, tagged dataset.
- Fits to 12 angular coefficients in  $4 \times 36$  bins in 4d variables.
- With w > 1 FNAL/MILC, HPQCD, **JLQCD** included.



 $|V_{\rm cb}| = (40.57 \pm 1.15) \times 10^{-3} \text{ (only } h_{A_1}(1))$  $|V_{\rm cb}| = (40.3 \pm 1.2) \times 10^{-3} \ (h_{A_1}(w))$  $|V_{\rm cb}| = (38.3 \pm 1.1) \times 10^{-3} (h_{A_1}(w), R_{1,2}(w))$  $|V_{\rm cb}| = (41.0 \pm 0.7) \times 10^{-3} \text{ (all } w > 1)$ 

• Various other combinations with varying *p*-values

 $|V_{cb}^{\mathrm{incl}}|$  from  $q^2$  moments

[PRD104, 11201(2021), Belle] [2205.06372, BelleII] [JHEP10068(2022), q<sup>2</sup> moments] [2310.20324, global fit]



• The BF's are from Belle-07 and BaBar-10 and could be updated.

Biplab Dey (ELTE)

Flavor physics @ LHCb and BelleII  $13^{th}$  December 2023 51/51

Inclusive  $|V_{cb}|$  at Belle(II) Inclusive  $|V_{ub}|/|V_{cb}|$ , Belle tagged

## Ratio of inclusive $|V_{\rm ub}|/|V_{\rm cb}|$

[2311.00458]

• BelleII's FEI at Belle. Data-driven control of  $X_c$  in  $E_{\ell} > 1$  GeV



Inclusive  $|V_{cb}|$  at Belle(II)  $B_s^0 \to K^-$ , LHCb

 $|V_{
m ub}|/|V_{
m cb}|$  from  $B^0_s o K^- \mu^+ 
u_\mu$  [prl 126, 081804 (2021)]

• Uses  $B_s^0 \to D^- \mu^+ \nu_{\mu}$  as the control modes (Run 1, 2/fb). Isolation variables for background reduction.



# Combined R(D)- $R(D^*)$

[PRL 131, 111802 (2023)] [PRL 115, 111803 (2015)]

- Run1 (3/fb) dataset with muonic τ reconstruction.
- Signal  $\overline{B}^0 \to D^{*+} \tau^- \overline{\nu}_{\tau},$  $B^- \to \{D^{*0}, D^0\} \tau^- \overline{\nu}_{\tau}$
- Isolation variables against feedown  $(\overline{B} \to D^{**} \ell^- \overline{\nu}_{\ell})$  and double charm  $(\overline{B} \to D^{(*)} DX)$
- 3d template fit to  $q^2$  (4 bins),  $m_{\text{miss}}^2$  and  $E_{\mu}^*$ .
- Simultaneous fits to signal + background enriched control samples (data-driven)
- $\bullet\,$  Agree with SM at  $1.9\sigma$



#### Angular analyses as a tool for NP searches

• Huge LHC statistics allow precision measurements of angular observables in  $b \to s\ell^+\ell^-$  and  $b \to s\vec{\gamma}$ . Direct access to  $C_i^{\rm NP}$ .

• Eg.,  $\vec{A_{\rm b}^0} \equiv |[ud]\vec{b}\rangle$  reflects the properties of the *b*-quark, with [ud] as spectator diquark.

• 
$$\vec{\Lambda_{\rm b}^0} \to \Lambda^*(\to pK^-)\ell^+\ell^-: \{q^2 \equiv m_{\ell^+\ell^-}^2, k^2 \equiv m_{pK}^2\} + \{\theta_\ell, \theta_p, \phi_\ell, \phi_p\}$$



• If  $\Lambda_{\rm b}^0$  is unpolarized,  $\phi_{\ell} = 0$ ,  $\chi \equiv \phi_p$ . Similar definitions for  $B^0 \to K^+ \pi^- \ell^+ \ell^-$ ,  $B_s^0 \to K^+ K^- \ell^+ \ell^-$ .

# ACCESS TO $B \to T \mu^+ \mu^-$

- Till now, most of the work on spin-1  $K^*(892)$  and  $\phi(1020)$  states.
- Spin-2 (tensor) states,  $K_2^*(1430) \to K\pi$  and  $f_2'(1525) \to K^+K^-$  also accessible at LHCb.
- Complementary information, compared to spin-1 states.



• These excited states also accessible in radiative  $B_{(s)}^0$  decays at LHCb, with significant statistics (CERN-THESIS-2020-004).

51/51

ANGULAR ANALYSIS OF  $B o K \mu^+ \mu^-$  [jhep of 082 (2014)]

• In SM, almost pure  $\sin^2 \theta_{\ell}$ . Look for non-zero  $F_{\rm H}$  and  $A_{\rm FB}$  in rate  $\propto \frac{3}{4}(1 - F_{\rm H}) \sin^2 \theta_{\ell} + \frac{1}{2}F_{\rm H} + A_{\rm FB} \cos \theta_{\ell} \Rightarrow \text{SM null test.}$ 



Biplab Dey (ELTE)

Flavor physics @ LHCb and BelleII

13<sup>th</sup> December 2023

# $B^+ \to K^+ \nu_\ell \overline{\nu}_\ell$ at BelleII

#### [2311.14647] [PRL 127 181802 (2021)]



 $\Lambda^0_{\rm b} \to \Lambda^0 \mu^+ \mu^-$  moments analysis

- Since  $\Lambda^0$  is a narrow state, FFs from lattice exist.
- However, since  $\Lambda^0$  is long-lived, reconstruction efficiency is not optimal.





• Angular moments analysis in the high- $q^2$  region:



 $\Lambda^0_{\rm b} \to p K^- \gamma$ 

#### LHCb-PAPER-2023-036 ( $\hookrightarrow$ JHEP)

- High statistics due to photon pole.
- Variables:  $\{m_{pK}, \cos \theta_h\}$ .



PDG resonances, L ≤ 3 waves. Additional <sup>3</sup>/<sub>2</sub><sup>-</sup> non-res. component.
Takeaway: m<sub>pK</sub> spectrum show "non-trivial" q<sup>2</sup> dependence.



$$\Lambda^0_{
m b} o \Lambda^0 \gamma$$
: GLOBAL  $C_7^{(')}$  FIT

• Reduces a 4-fold ambiguity in the  $C_7^{\text{NP}}$  phase to a 2-fold ambiguity.

