Select puzzles in hadronic B decays

Bhubanjyoti Bhattacharya (bbhattach@ltu.edu)

Lawrence
Technological
University

Presented at :

The International Conference on High Energy Particle and Astroparticle Physics, ICHEPAP 2023 Dec 11-15, 2023, Kolkata, India bit.ly/ichepap23in

B Bhattacharya (LTU) Select puzzles in flavor physics December 13, 2023 1/20

The Standard Model and beyond

- The Standard Model is incomplete!
- Dark Matter/Dark energy Baryon-asymmetry problem May require new particles/symmetry
- New physics may be beyond energy frontier reach
- Puzzles/Anomalies \rightarrow SM prediction \neq Expt. Intensity frontier ⇔ Energy frontier

 \mathbb{R}^n $\mathcal{A} \equiv 0$ \equiv

CKM Unitarity and the angle γ/ϕ_3

$$
V_{\text{CKM}} = \frac{u}{c} \begin{pmatrix} V_{ud} & v_{us} & v_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}
$$

- V_{CKM} is Unitary $\Rightarrow V_{CKM}^{\dagger}V_{CKM} = 1$
- **Empirically close to diagonal**

 \rightarrow smaller elements farther from diagonal

$$
\bullet \ V_{ij}^* V_{ik} = \delta_{jk} \qquad \sum_i |V_{ij}|^2 = 1
$$

$$
\bullet \ \ V^*_{ub}V_{ud}+V^*_{cb}V_{cd}+V^*_{tb}V_{td}=0
$$

Direct measurement of γ : methods

- Consider $B^-\to D^0K^-$ and $B^-\to \overline{D}^0K^-$ with $D^0\to f$
- Anti-decays are $B^+ \to \overline{D}^0 K^-$ and $B^+ \to D^0 K^+;$ No CP Violation in D decays
- \bullet Total number of observables in the B decays: Γ , $\overline{\Gamma}$ for each decay \rightarrow 4

Only tree-level contributions in the SM Highly-suppressed Loop (box diagrams) [Brod and Zupan \(2013\)](https://arxiv.org/abs/1308.5663)

つQへ

Direct measurement of γ : methods

- Consider $B^-\to D^0K^-$ and $B^-\to \overline{D}^0K^-$ with $D^0\to f$
- Anti-decays are $B^+ \to \overline{D}^0 K^-$ and $B^+ \to D^0 K^+;$ No CP Violation in D decays
- \bullet Total number of observables in the B decays: Γ , $\overline{\Gamma}$ for each decay \rightarrow 4

Only tree-level contributions in the SM Highly-suppressed Loop (box diagrams) [Brod and Zupan \(2013\)](https://arxiv.org/abs/1308.5663)

- [GLW](https://inspirehep.net/literature/300114) method $(f_{CP}%)_{A}$ such as $\pi^{+}\pi^{-})$
- 3 theory parameters: $|r_B|, \delta, \gamma$
- Extract γ from a fit
- Theory calculations of non-p amplitudes?
- [ADS](https://inspirehep.net/literature/531525) method $(f$ such as $K^+\pi^-)$
- [GGSZ](https://inspirehep.net/literature/615572) method (f such as $K_S\pi\pi$)
	- $\leftarrow k$ bins in 3-body Dalitz analysis
	- \Rightarrow 2k + 3 parameters, 4k observables
	- \Rightarrow Analysis works for $k > 2$

④ ランスミン スミン

 \equiv

CKM Unitarity: experiments

- \bullet Direct γ measurement is statistics limited
- Current $\Delta\gamma\sim7^\circ$ ([LHCb-CONF-2022-003](https://cds.cern.ch/record/2838029))
- Long term <code>LHCb</code> target $\Delta\gamma\sim 1-2^\circ\leftarrow$ discrepancy possible

 OQ

Alternative methods: decays with tree $+$ loop

Consider the decay $B^0_d \to \pi^- K^+$: ${\cal A}(B^0_d \to \pi^- K^+) = -T' e^{i\gamma} + P'_{tc}$

 \leftarrow \equiv

 $\mathcal{A} \quad \overline{\mathcal{B}} \quad \mathcal{V}$

 \leftarrow \Box \rightarrow

Ξ

Weak-phase information from B decays with tree $+$ loop

•
$$
\mathcal{A}(B \to f) = |a| + |b|e^{i\phi}e^{i\delta} \to \Gamma \propto |\mathcal{A}|^2
$$

$$
\bar{\mathcal{A}}(\bar{B}\to\bar{f})=|a|+|b|e^{-i\phi}e^{i\delta}\rightarrow\ \bar{\Gamma}\propto|\bar{\mathcal{A}}|^2
$$

 -4 parameters: 2 magnitudes $(|a|, |b|)$, 1 rel. strong phase (δ) , 1 rel. weak phase (ϕ)

• 2 Observables:
$$
B_{\text{CP}} = \frac{\Gamma + \bar{\Gamma}}{2\Gamma_B}
$$
, $C_{\text{CP}} = \frac{\Gamma - \bar{\Gamma}}{\Gamma + \bar{\Gamma}}$ (direct CP asymmetry)

 \equiv

 OQ

イロト イ押 トイヨ トイヨト

Weak-phase information from B decays with tree $+$ loop

•
$$
\mathcal{A}(B \to f) = |a| + |b|e^{i\phi}e^{i\delta} \to \Gamma \propto |\mathcal{A}|^2
$$

\n $\bar{\mathcal{A}}(\bar{B} \to \bar{f}) = |a| + |b|e^{-i\phi}e^{i\delta} \to \bar{\Gamma} \propto |\bar{\mathcal{A}}|^2$

 -4 parameters: 2 magnitudes $(|a|, |b|)$, 1 rel. strong phase (δ) , 1 rel. weak phase (ϕ)

• 2 Observables:
$$
\mathcal{B}_{\text{CP}} = \frac{\Gamma + \bar{\Gamma}}{2\Gamma_B}, \ \ C_{\text{CP}} = \frac{\Gamma - \bar{\Gamma}}{\Gamma + \bar{\Gamma}} \text{ (direct CP asymmetry)}
$$

• For $B^0 \rightarrow f$ with $f = \bar{f}$ additional observable S_{CP} (indirect CP asymmetry)

$$
\text{B-mixing: } \left| B \right\rangle_{\text{mass}} = p \left| B \right\rangle + q \left| \bar{B} \right\rangle \text{ with } \lambda = \frac{q}{p} \frac{\bar{\mathcal{A}}}{\mathcal{A}} \Rightarrow S_f = \frac{2 \text{Im}[\lambda]}{1 + \vert \lambda \vert^2}
$$

- Information about q/p comes from $B \bar{B}$ mixing (independent source)
- For B_s , additional observable $A^{\Delta \Gamma} = \frac{-2 {\rm Re}[\lambda]}{1+ | \lambda |^2}$ $\frac{2\pi\epsilon_0 \nu_1}{1+|\lambda|^2}$ (since $\Delta\Gamma_s$ is sizable)

$$
\bullet \ \ C_{\rm CP} = \frac{1 - |\lambda|^2}{1 + |\lambda|^2} \ \Rightarrow \ \text{Identity: } (C_{\rm CP})^2 + (S_{\rm CP})^2 + (A^{\Delta \Gamma})^2 = 1 \text{ (LHCb)}
$$

 22.29

U-spin in hadronic B decays

 $B_d^0 \to \pi^+ \pi^-$

 $-B_s^0$ $B_s^0 \rightarrow K^+K^-$

 $\bar{\Xi}$

 OQ

Weak-phase info using U-spin

- R. Fleischer, [hep-ph/9903456:](https://arxiv.org/abs/hep-ph/9903456) Compare $B_s\to K^+K^-$ with $B_d\to\pi^+\pi^-$
- 4 observables: C_{KK} , S_{KK} , $C_{\pi\pi}$, $S_{\pi\pi}$
- $|q/p|\approx 1$ for $B_{d,s}^0$ (can check from semileptonic B decays); $\arg(a_s/p_s) \approx 2\beta_s \rightarrow$ from $B_s \rightarrow J/\Psi \phi$
- Hadronic parameters same for both decays: $(|b/a|, \delta) \leftarrow 2$ parameters
- Weak decay parameters: γ , $\beta_d \leftarrow$ Up to 2 parameters
- \bullet $C_{\pi\pi}$, C_{KK} , S_{KK} sufficient to determine $\gamma + 2$ hadronic parameters
- Use $S_{\pi\pi}$ to also get β_d
- Data unavailable at the time

The strategies proposed in this paper are very interesting for "second-generation" Bphysics experiments performed at hadron machines, for example LHCb, where the very

医阿里氏试验检

 \equiv

- * Work completed with LTU student Andrea Houck: [2308.16240 \(PRD Accepted\)](https://arxiv.org/abs/2308.16240)
	- $\sqrt{ }$ Find flavor-SU(3) representations of $\langle B|H|PPP\rangle_{FA}$

 $B \rightarrow (P_1P_2P_3)_{FA}$ with $|P_1P_2P_3\rangle = -|P_2P_1P_3\rangle$.

- \rightarrow $|PPP\rangle_{FA} \equiv (8 \times 8 \times 8)_{FA}$ $= {\bf 27_{FA}} + {\bf 10_{FA}} + {\bf 10^*_{FA}} + {\bf 8_{FA}} + {\bf 1}$
- \rightarrow H \rightarrow $\bar{3} \times 3 \times \bar{3}$ has $\bar{3}$, 6 , $\overline{15}$
- \rightarrow Find reduced set of SU(3) amplitudes
- \rightarrow Establish γ extraction method

$$
\rightarrow \ \gamma_{\rm FS} \neq \gamma_{\rm FA} \Rightarrow B \to K \pi \pi \ \text{puzzle?}
$$

- * Work completed with LTU student Andrea Houck: [2308.16240 \(PRD Accepted\)](https://arxiv.org/abs/2308.16240)
	- $\sqrt{ }$ Find flavor-SU(3) representations of $\langle B|H|PPP\rangle_{FA}$

 $B \rightarrow (P_1P_2P_3)_{FA}$ with $|P_1P_2P_3\rangle = -|P_2P_1P_3\rangle$.

- \rightarrow $|PPP\rangle_{FA} \equiv (8 \times 8 \times 8)_{FA}$ $= {\bf 27_{FA}} + {\bf 10_{FA}} + {\bf 10^*_{FA}} + {\bf 8_{FA}} + {\bf 1}$
- \rightarrow H \rightarrow $\bar{3} \times 3 \times \bar{3}$ has $\bar{3}$, 6 , $\overline{15}$
- \rightarrow Find reduced set of SU(3) amplitudes
- \rightarrow Establish γ extraction method
- $\rightarrow \gamma_{FS} \neq \gamma_{FA} \Rightarrow B \rightarrow K \pi \pi$ puzzle?
- \rightarrow 5 decays have 12 observables
- \rightarrow 5 decays depend on 11 hadronic parameters

イロト イ何 トイヨ トイヨ トーヨー つくへ

A result

γ from three-body decays

- 3-body final state under $SU(3)$: $B \rightarrow K \pi \pi, K \overline{K} K$
	- \rightarrow 6 final state symmetries : permutations of 3 particles
- Fully-symmetric state (Rey-Le Lorier, London, 1109.0881)
	- \rightarrow More observables than unknowns $\Rightarrow \gamma$ can be extracted
	- \rightarrow BB, Imbeault, London, 1303,0846

→ SM-like : 77◦ \rightarrow 32°, 259°, 315° $K\pi\pi - K\overline{K}K$ puzzle ?

David London's talk in this session!

- Group theory analysis : I-spin, U-spin, SU(3) relations
	- \rightarrow BB, Gronau, Imbeault, London, Rosner, 1402.2909

Bhubanjyoti Bhattacharya (UdeM) Multi-body decays & flavor symmetries July 30, 2015 2 / 13

- $2A(B^0 \to K^+\pi^0\pi^-)_{\text{fs}} = be^{i\gamma} \kappa c$. $\sqrt{2}A(B^0 \to K^0 \pi^+ \pi^-)_{\epsilon_0} = -de^{i\gamma} - \tilde{P}'_{\mu}e^{i\gamma} - a + \kappa d$. $\sqrt{2}A(B^+\to K^+\pi^+\pi^-)_{\rm fs} = -ce^{i\gamma} - \tilde{P}'_{\mu e}e^{i\gamma} - a + \kappa b$. $\sqrt{2}A(B^0 \to K^+K^0K^-)_{fs} = \alpha_{SH(3)}(-ce^{i\gamma} - \tilde{P}'_{se}e^{i\gamma} - a + \kappa b)$ $A(B^0 \to K^0 K^0 \bar{K}^0)_{\text{fs}} = \alpha_{SU(3)} (\tilde{P}'_{uc} e^{i\gamma} + a)$,
	- SU(3)_F ignore m_u, m_d, m_s
	- $\bullet \equiv$ diagrams [1402.2909](https://arxiv.org/abs/1402.2909)
	- \bullet BB+ data fit, 1303.0846
	- Updated: Bertholet et al., [1812.06194](https://arxiv.org/abs/1812.06194)
	- N Dalitz points
		- \Rightarrow 8N hadronic parameters + γ
	- 11N observables
		- $\Rightarrow \gamma$ can be extracted

B Bhattacharya (LTU) Select puzzles in flavor physics December 13, 2023 11/20

およぼ およぼ あん

 280

 OQ

 \equiv

A puzzle in $B \to \pi K$ decays

* Amplitudes:
$$
A = A_1 + A_2 e^{i\phi} e^{i\delta}
$$
 and $\bar{A} = A_1 + A_2 e^{-i\phi} e^{i\delta}$
\n \Rightarrow CP Asymmetry: $A_{\text{CP}} = \frac{|\bar{A}|^2 - |A|^2}{|\bar{A}|^2 + |\bar{A}|^2} \propto \sin(\phi) \sin(\delta)$

* Consider processes:

$$
B^+ \to \pi^0 K^+ \qquad \mathcal{A}^{0+} = -T' e^{i\gamma} + P'_{tc} - P'_{EW} \qquad (P'_{EW} \propto T')
$$

\n
$$
B_d^0 \to \pi^- K^+ \qquad \mathcal{A}^{-+} = -T' e^{i\gamma} + P'_{tc}
$$

\n
$$
\Rightarrow \qquad A_{\rm CP}(B^+ \to \pi^0 K^+) = A_{\rm CP}(B_d^0 \to \pi^- K^+)
$$
 in Theory!

* Experiment:

$$
A_{\rm CP}^{0+} = 0.025 \pm 0.016
$$
 2012.12789
\n
$$
A_{\rm CP}^{-+} = -0.084 \pm 0.004
$$
 1805.06759 $\sim 6.5\sigma$ discrepancy!

 \equiv

 OQ

イロト イ部 トイモト イモト

The complete $B \to \pi K$ puzzle

- \bullet 4 $B \to K\pi$ processes with 9 observables
- Hadronic parameters $+ \gamma$ fits prefer
	- A) Large C/T or B) $\gamma \neq \gamma_{\text{tree}}$
- \bullet Expected $C/T \sim 0.2 0.3$

$$
A^{+0} = -P'_{tc} + P'_{uc}e^{i\gamma} - \frac{1}{3}P'^C_{EW},
$$

\n
$$
\sqrt{2}A^{0+} = -T'e^{i\gamma} - C'e^{i\gamma} + P'_{tc} - P'_{uc}e^{i\gamma}
$$

\n
$$
-P'_{EW} - \frac{2}{3}P'^C_{EW},
$$

\n
$$
A^{-+} = -T'e^{i\gamma} + P'_{tc} - P'_{uc}e^{i\gamma} - \frac{2}{3}P'^C_{EW},
$$

\n
$$
\sqrt{2}A^{00} = -C'e^{i\gamma} - P'_{tc} + P'_{uc}e^{i\gamma}
$$

\n
$$
-P'_{EW} - \frac{1}{3}P'^C_{EW}.
$$

 \equiv

 OQ

イロト イ押 トイヨ トイヨト

The $B \to \pi K$ puzzle: A solution!

* Consider an Axionlike Particle $(ALP) - 2104.03947$ $(ALP) - 2104.03947$

$$
\mathcal{L} \;\supset\; -\; i \sum_{f=u,d,l} \; \eta_f \; \frac{m_f}{f_a} \; \bar{f} \; \gamma_5 \; f \; a \; + \; \frac{1}{4} \; \kappa \; a \; F^{\mu\nu} \; \tilde{F}_{\mu\nu}
$$

 $\rightarrow m_a \simeq m_{\pi^0}$ and ALP promptly decays to $\gamma\gamma$

- \rightarrow Mixes with the π^0 : $|a\rangle = \sin\theta \left|\pi^0\right\rangle_{\rm phys} + \cos\theta \left|a\right\rangle_{\rm phys}$
- $\lambda \to B \to \pi^0 K$ processes get new contribution: $\mathcal{A} = |\mathcal{A}|e^{i\pi/2}$ $\sqrt{2} \mathcal{A}^{0+} = \ldots + \mathcal{A}; \qquad \sqrt{2} \mathcal{A}^{00} = \ldots + \mathcal{A}$
- \rightarrow Processes not involving a π^0 unaltered \mathcal{A}^{+0} and \mathcal{A}^{-+} stay the same
- $\rightarrow \,$ Leads to a good fit with $|\mathcal{A}| \sim P_{EW}'$
- → Constraint from $B \to Ka (B \to K + invis): B \sim 10^{-5} \Rightarrow \sin \theta \sim 0.1 0.2$
- * Work in progress: How to detect an ALP with mass close to m_{π^0} in other flavor processes.

イロト イ母ト イヨト

The U-spin puzzle

- <code>LHCb</code> measurement of <code>CP</code> Asymmetries in $B_{s(d)} \to K^+K^-(\pi^+\pi^-)$: [1805.06759,](https://arxiv.org/abs/1805.06759) [2012.05319](https://arxiv.org/abs/2012.05319)
- **Theory investigation of U-spin in** $KK, \pi\pi$ **: [Nir, Savoray, and Viernik, 2201.03573](https://arxiv.org/abs/2201.03573)**
- Other U-spin related decays: [BB with others,](https://arxiv.org/abs/2211.06994) 2211.06994
- \bullet 6 decays possible: 3 decays each $\Delta S = 0(b \rightarrow d), 1(b \rightarrow s)$; 4 U-spin RMEs

 $\mathbf{b} = \mathbf{d}$. The \mathbf{b}

- $B \to PP$ data by transition
	- $\Delta S=0$: $\bar{b}\rightarrow \bar{d}$ transitions
	- ¹⁵ measurements available
	- \bullet 7 RMEs \rightarrow 13 hadronic parameters
	- $\chi^2_{\rm min}/{\rm dof} = 0.35/2;~p \sim 0.8$ good fit

- $\Delta S=1\colon \bar b\to \bar s$ transitions
- 15 measurements available
- \bullet 7 RMEs \rightarrow 13 hadronic parameters

$$
\bullet \ \chi^2_{\rm min}/{\rm dof} = 1.7/2; \ p \sim 0.4 \ {\rm good \ fit}
$$

イラト $\mathcal{A} \equiv 0$ Ξ

$B \to PP$ data: Separate fits

- Both $b \to d$ $(\Delta S = 0)$ and $b \to s$ $(\Delta S = 1)$ fits are good
- \bullet $C/T \sim 0.2-0.3$ is expected
- $\Delta S = 0$: $C/T \sim 1.7 \pm 0.3$; $\Delta S = 1$: $C/T \sim 0.9 \pm 0.4$
- \bullet C/T differs largely from standard QCD expectations
- Comparison of parameters ($'$ indicates $b \rightarrow s)$

- Ratios expected to be 1 in SU(3) $_F \rightarrow$ large breaking observed in T and C
- SU(3)_F breaking is much larger compared to f_K/f_π or $m_s/\Lambda_{\rm QCD}$

 \equiv

 OQ

イロト イ押 トイヨ トイヨ トー

$B \to PP$ data: Combined fit and anomaly

- BB with others in arxiv:2311.18011: fit the entire set of $B \rightarrow PP$ data
- $\mathsf{SU}(3)$ hypothesis: 30 observables, 13 parameters: fit gives $\chi^2_\text{min}/\text{dof}\sim 43/17$
- \bullet 3.5 σ deviation from the SM flavor-SU(3) hypothesis
- Fit with QCDf-inspired constraint $|C/T| = 0.2$

$$
\rightarrow \Delta S = 1 \text{ fit: } \chi_{\text{min}}^2/\text{dof} \sim 6.3/3, p \sim 0.1
$$

 $\to \ \Delta S = 0$ fit: $\chi^2_{\rm min}/{\rm dof} \sim 18.8/3$, $p \sim 3 \times 10^{-4}$ or 3.6 σ away from <code>SM SU(3)</code> $_F$

 \rightarrow <code>Combined</code> fit: $\chi^2_{\rm min}/{\rm dof}\sim55.5/18,$ $p\sim10^{-5}$ or 4.4 σ away from <code>SM SU(3)</code> $_F$

- Both fits find deviations in $B^0_s \to K^+K^-$ observables
- Deviations also in $B^+ \to \pi^0 K^+, B^0 \to \pi^- K^+, \pi^0 K^0, K^0 \overline{K}^0$

A O D A (FIDA A IF A IF A O Q O

Summary

- \bullet Sign of anomalies in hadronic B decays
- Large U-spin breaking needed to explain U-spin related $B^0_{(s)}\to DD$ (D = Doublet)
- Puzzle appears also in $SU(3)_F$ related $B \to PP$ (P = pseudoscalar)
- Puzzles appear to involve $B^0_s \to K^+K^-$
- U-spin puzzle needs unusually large T_s^0/T_d^0
- Emerging cracks in the fabric of flavor symmetries
- Lack of QCD understanding or hint for new physics in $b \rightarrow s$?
- Lots of data from LHCb, Belle II, and other experiments in the next decade
- The future is bright!

Thanks!

- UG students: A. Jean, N. Payot (UdeM), A. Houck (LTU)
- Grad students: J. Waite (UMiss)
- Postdocs: S. Kumbhakar (UdeM)
- Faculty: D. London (UdeM), A. Datta (UMiss)
- Support: LTU,

US National Science Foundation (PHY-2013984)

 OQ

Back-up Slides

B Bhattacharya (LTU) Select puzzles in flavor physics December 13, 2023 21/20

 \equiv

 OQ

イロト イ部 トイモト イモト

U-spin: LHCb measurement and theory progress

- <code>LHCb</code> measurement of <code>CP</code> Asymmetries in $B_{s(d)} \to K^+K^-(\pi^+\pi^-)$: [1805.06759,](https://arxiv.org/abs/1805.06759) [2012.05319](https://arxiv.org/abs/2012.05319)
- Theory investigation of U-spin: [Nir, Savoray, and Viernik, 2201.03573](https://arxiv.org/abs/2201.03573)
- $C_{KK} = 0.172 \pm 0.031$, $S_{KK} = 0.139 \pm 0.032$, $C_{\pi\pi} = -0.32 \pm 0.04$, $S_{\pi\pi} = -0.64 \pm 0.04$
- Use β_d $(B_d \rightarrow J/\Psi K_s)$, β_s $(B_s \rightarrow J/\Psi \phi)$ $\gamma(B \to DK)$
- Find hadronic parameters for both decays

 \rightarrow test U-spin

$$
\bullet \ \frac{|b_s/a_s|}{|b_d/a_d|} = 1.07, \ |a_s/a_d| = 1.26
$$

 \rightarrow (0 - 30%) U-spin breaking

 $(\mathcal{O}(m_s/\Lambda_{\rm QCD}) \sim 30\%, f_K/f_\pi - 1 \sim 20\%)$

• Result: $NP +$ different orders of breaking at play

 \rightarrow \equiv \rightarrow

 \bullet $|P_1P_2P_3\rangle \rightarrow 8 \times 8 \times 8 = 512$

 OQ

 \equiv

イロト イ押ト イヨト イヨト

- \bullet $|P_1P_2P_3\rangle \rightarrow 8 \times 8 \times 8 = 512$
- 64 + 27 + 10 + 10^{*} + 8 + 1 = 120 fully symmetric under $8_i \leftrightarrow 8_j$

 \equiv

 OQ

イロト イ押 トイヨ トイヨト

- \bullet $|P_1P_2P_3\rangle \rightarrow 8 \times 8 \times 8 = 512$
- 64 + 27 + 10 + 10^{*} + 8 + 1 = 120 fully symmetric under $8_i \leftrightarrow 8_j$
- \bullet 27 + 10 + 10^{*} + 8 + 1 = 56 fully antisymmetric under $8_i \leftrightarrow 8_j$
- Counting: ${}^{8}C_{3} = 56 \leftrightarrow$ all 3 particles must be distinct/distinguishable

 \equiv \cap Q \sim

イロト イ押 トイヨ トイヨ トー

- \bullet $|P_1P_2P_3\rangle \rightarrow 8 \times 8 \times 8 = 512$
- 64 + 27 + 10 + 10^{*} + 8 + 1 = 120 fully symmetric under $8_i \leftrightarrow 8_j$
- \bullet 27 + 10 + 10^{*} + 8 + 1 = 56 fully antisymmetric under $8_i \leftrightarrow 8_j$
- Counting: ${}^{8}C_{3} = 56 \leftrightarrow$ all 3 particles must be distinct/distinguishable
- $H=\mathcal{O}(\bar{b} \to \bar{c}c\bar{s})+\mathcal{O}(\bar{b} \to \bar{u}u\bar{s})\colon \ V_{cb}^*V_{cs}\ \boldsymbol{3^*} + V_{ub}^*V_{us}(\boldsymbol{3^*} \times \boldsymbol{3} \times \boldsymbol{3^*})$
	- $= V_{cb}^{*}V_{cs}$ 3* + $V_{ub}^{*}V_{us}$ (3* + 6 + 15*) $H | B \rangle: (3^* + 6 + 15^*) \times 3 \rightarrow (1 + 8) + (8 + 10) + (8 + 10^* + 27)$

- \bullet $|P_1P_2P_3\rangle \rightarrow 8 \times 8 \times 8 = 512$
- 64 + 27 + 10 + 10^{*} + 8 + 1 = 120 fully symmetric under $8_i \leftrightarrow 8_j$
- 27 + 10 + $10^* + 8 + 1 = 56$ fully antisymmetric under $8_i \leftrightarrow 8_j$
- Counting: ${}^{8}C_{3} = 56 \leftrightarrow$ all 3 particles must be distinct/distinguishable
- $H=\mathcal{O}(\bar{b} \to \bar{c}c\bar{s})+\mathcal{O}(\bar{b} \to \bar{u}u\bar{s})\colon \ V_{cb}^*V_{cs}\ \boldsymbol{3^*} + V_{ub}^*V_{us}(\boldsymbol{3^*} \times \boldsymbol{3} \times \boldsymbol{3^*})$
- $= V_{cb}^{*}V_{cs}$ 3* + $V_{ub}^{*}V_{us}$ (3* + 6 + 15*) $H | B \rangle: (3^* + 6 + 15^*) \times 3 \rightarrow (1 + 8) + (8 + 10) + (8 + 10^* + 27)$
- Decay amplitude $=\bra{B}H\ket{PPP}_{\rm FA}=\sum_{i=1}^{7}$ $\frac{i=1}{i}$ C_{i}^{u} $\left\langle 3\right\vert$ $\mathbf{3^{*},6},$ $\mathbf{15^{*}}\left\vert 56\right\rangle _{i}\;$ $V_{ub}^{*}V_{us}$ $+\sum^2$ $\frac{i=1}{i}$ $C_i^c \, \langle {\bf 3}| \, {\bf 3}^* \, |56 \rangle_i \; \; V_{cb}^* V_{cs}$

 $\alpha \equiv \alpha$ \equiv

Constructing the fully-antisymmetric state

- $\left|\left[P_1P_2P_3\right]\right\rangle_{\text{FA}} = \left(\left|\left[P_1P_2\right]P_3\right\rangle + \left|\left[P_2P_3\right]P_1\right\rangle + \left|\left[P_3P_1\right]P_2\right\rangle\right)/\sqrt{3}$
- $\vert [P_1P_2]P_3\rangle = \langle [P_1P_2P_3\rangle [P_2P_1P_3\rangle)/\sqrt{2} = -\vert [P_2P_1]P_3\rangle$

Constructing the fully-antisymmetric state

- $\left|\left[P_1P_2P_3\right]\right\rangle_{\text{FA}} = \left(\left|\left[P_1P_2\right]P_3\right\rangle + \left|\left[P_2P_3\right]P_1\right\rangle + \left|\left[P_3P_1\right]P_2\right\rangle\right)/\sqrt{3}$
- $\vert [P_1P_2]P_3\rangle = \langle [P_1P_2P_3\rangle [P_2P_1P_3\rangle)/\sqrt{2} = -\vert [P_2P_1]P_3\rangle$
- $\left|\left[P_2P_1P_3\right]\right\rangle_{\text{FA}} = \left(\left|\left[P_2P_1\right]P_3\right\rangle + \left|\left[P_1P_3\right]P_2\right\rangle + \left|\left[P_3P_2\right]P_1\right\rangle\right)/\sqrt{3}$

 $= -(||[P_1P_2]P_3\rangle + |[P_3P_1]P_2\rangle + |[P_2P_3]P_1\rangle)/\sqrt{3} = -||[P_1P_2P_3]\rangle_{FA}$

A O D A (FIDA A IF A IF A O Q O

Constructing the fully-antisymmetric state

- $\left|\left[P_1P_2P_3\right]\right\rangle_{\text{FA}} = \left(\left|\left[P_1P_2\right]P_3\right\rangle + \left|\left[P_2P_3\right]P_1\right\rangle + \left|\left[P_3P_1\right]P_2\right\rangle\right)/\sqrt{3}$
- $\vert [P_1P_2]P_3\rangle = \langle [P_1P_2P_3\rangle [P_2P_1P_3\rangle)/\sqrt{2} = -\vert [P_2P_1]P_3\rangle$
- $\left|\left[P_2P_1P_3\right]\right\rangle_{\text{FA}} = \left(\left|\left[P_2P_1\right]P_3\right\rangle + \left|\left[P_1P_3\right]P_2\right\rangle + \left|\left[P_3P_2\right]P_1\right\rangle\right)/\sqrt{3}$

 $= -(||[P_1P_2]P_3\rangle + |[P_3P_1]P_2\rangle + |[P_2P_3]P_1\rangle)/\sqrt{3} = -||[P_1P_2P_3]\rangle_{FA}$

Example state: $|K^+\rangle= \left| \mathbf{8}, 1, \frac{1}{2} \right|$ $\frac{1}{2}, \frac{1}{2}$ $\ket{\frac{1}{2}}, \ket{\pi^+} = \ket{\mathbf{8},0,1,1}, \ket{\pi^-} = \ket{\mathbf{8},0,1,-1}$

$$
|K^{+}\pi^{+}\pi^{-}\rangle_{\text{FA}} = \frac{1}{\sqrt{6}}|27,1,\frac{3}{2},\frac{1}{2}\rangle + \frac{\sqrt{2}}{\sqrt{15}}|27,1,\frac{1}{2},\frac{1}{2}\rangle + \frac{1}{\sqrt{2}}|10,1,\frac{3}{2},\frac{1}{2}\rangle + \frac{1}{\sqrt{5}}|8,1,\frac{1}{2},\frac{1}{2}\rangle
$$

\n
$$
SU(2) Clebsch-Gordan \times SU(3) isoscalar coefficient factor factor
$$

A O D A (FIDA A IF A IF A O Q O

$$
\bullet \mathcal{A}(B^+ \to K^+\pi^+\pi^-)_{\text{FA}} = \frac{V_{cb}^*V_{cs}}{\sqrt{5}}B^{fa} + V_{ub}^*V_{us} \left[\frac{A^{fa}}{\sqrt{5}} + \frac{1}{\sqrt{5}}(R_8^{fa} + \sqrt{5}R_{10}^{fa}) - \frac{3}{5}(P_8^{fa} - 3\sqrt{6}P_{27}^{fa})\right]
$$

$$
= \tilde{P}_{ct}' + \tilde{P}_{ut}' - C_1' + T_2' - A'
$$

B Bhattacharya (LTU) Select puzzles in flavor physics December 13, 2023 25/20

 OQ

 \equiv

イロト イ部 トイモト イモト

$$
\begin{aligned} \bullet \ \mathcal{A}(B^+ \to K^+ \pi^+ \pi^-)_{\text{FA}} &= \frac{V_{cb}^* V_{cs}}{\sqrt{5}} B^{fa} + V_{ub}^* V_{us} \left[\frac{A^{fa}}{\sqrt{5}} + \frac{1}{\sqrt{5}} (R_8^{fa} + \sqrt{5} R_{10}^{fa}) - \frac{3}{5} (P_8^{fa} - 3\sqrt{6} P_{27}^{fa}) \right] \\ &= \tilde{P}_{ct}^{\prime} + \tilde{P}_{ut}^{\prime} - C_1^{\prime} + T_2^{\prime} - A^{\prime} \end{aligned}
$$

Establish equivalence between RMEs (A^{fa},B^{fa},\ldots) and diagrams (T'_1,C'_1,\ldots)

 \equiv

 OQ

イロト イ押ト イヨト イヨト

$$
\begin{aligned} \bullet \ \mathcal{A}(B^+ \to K^+ \pi^+ \pi^-)_{\text{FA}} &= \frac{V_{cb}^* V_{cs}}{\sqrt{5}} B^{fa} + V_{ub}^* V_{us} \left[\frac{A^{fa}}{\sqrt{5}} + \frac{1}{\sqrt{5}} (R_8^{fa} + \sqrt{5} R_{10}^{fa}) - \frac{3}{5} (P_8^{fa} - 3\sqrt{6} P_{27}^{fa}) \right] \\ &= \tilde{P}_{ct}' + \tilde{P}_{ut}' - C_1' + T_2' - A' \end{aligned}
$$

Establish equivalence between RMEs (A^{fa},B^{fa},\ldots) and diagrams (T'_1,C'_1,\ldots)

 \leftarrow \equiv \rightarrow

 OQ

$$
\bullet \ \mathcal{A}(B^+ \to K^+\pi^+\pi^-)_{\text{FA}} = \frac{V_{cb}^*V_{cs}}{\sqrt{5}}B^{fa} + V_{ub}^*V_{us} \left[\frac{A^{fa}}{\sqrt{5}} + \frac{1}{\sqrt{5}}(R_8^{fa} + \sqrt{5}R_{10}^{fa}) - \frac{3}{5}(P_8^{fa} - 3\sqrt{6}P_{27}^{fa})\right]
$$

$$
= \tilde{P}_{ct}' + \tilde{P}_{ut}' - C_1' + T_2' - A'
$$

Establish equivalence between RMEs (A^{fa},B^{fa},\ldots) and diagrams (T'_1,C'_1,\ldots)

\n- \n
$$
V_{cb}^* V_{cs} B_1^{fa} = 2\sqrt{6} (\tilde{P}_{ct}' - P A_{ct}')
$$
\n
\n- \n
$$
V_{cb}^* V_{cs} B^{fa} = \sqrt{5} \tilde{P}_{ct}'
$$
\n
\n- \n
$$
V_{ub}^* V_{us} R_{10}^{fa} = \frac{\sqrt{3}}{2} (T_1' + T_2' - C_1' + C_2')
$$
\n
\n- \n
$$
V_{ub}^* V_{us} P_{10^*}^{fa} = -\frac{1}{2\sqrt{2}} (T_1' + T_2' + C_1' - C_2')
$$
\n
\n

•
$$
V_{ub}^* V_{us} P_{27}^{fa} = -\frac{1}{2\sqrt{6}} (T_1' - T_2' + C_1' + C_2')
$$

Similar relations for

$$
A_1^{fa}, A^{fa}, R_8^{fa}, P_8^{fa}\,
$$

 OQ

 $\binom{q}{2}$

Observables for the FA states

Construct a fully-antisymmetric amplitude under momentum interchanges

$$
\mathcal{M}_{FA}(s_{12}, s_{13}) = \frac{1}{\sqrt{6}} \left[\mathcal{M}(s_{12}, s_{13}) - \mathcal{M}(s_{13}, s_{12}) - \mathcal{M}(s_{12}, s_{23}) + \mathcal{M}(s_{23}, s_{12}) - \mathcal{M}(s_{23}, s_{13}) + \mathcal{M}(s_{13}, s_{23}) \right]
$$

Ξ

 OQ

 $\mathcal{A} \ \overline{\mathcal{B}} \ \rightarrow \ \mathcal{A} \ \overline{\mathcal{B}} \ \rightarrow$

4 ロ ▶ 4 伊

 \mathbb{R}^2

Observables for the FA states

Construct a fully-antisymmetric amplitude under momentum interchanges

$$
\mathcal{M}_{FA}(s_{12}, s_{13}) = \frac{1}{\sqrt{6}} \left[\mathcal{M}(s_{12}, s_{13}) - \mathcal{M}(s_{13}, s_{12}) - \mathcal{M}(s_{12}, s_{23}) + \mathcal{M}(s_{23}, s_{12}) - \mathcal{M}(s_{23}, s_{13}) + \mathcal{M}(s_{13}, s_{23}) \right]
$$

Similarly construct $\overline{\mathcal{M}}_{FA}(s_{12}, s_{13})$ from CP-conjugate decay

 OQ

 $\mathcal{A} \ \overline{\Rightarrow} \ \mathcal{B} \ \ \mathcal{A} \ \overline{\Rightarrow} \ \mathcal{B}$

 \leftarrow \Box \rightarrow

Observables for the FA states

Construct a fully-antisymmetric amplitude under momentum interchanges

$$
\mathcal{M}_{FA}(s_{12}, s_{13}) = \frac{1}{\sqrt{6}} \left[\mathcal{M}(s_{12}, s_{13}) - \mathcal{M}(s_{13}, s_{12}) - \mathcal{M}(s_{12}, s_{23}) + \mathcal{M}(s_{23}, s_{12}) - \mathcal{M}(s_{23}, s_{13}) + \mathcal{M}(s_{13}, s_{23}) \right]
$$

- \bullet Similarly construct $\overline{\mathcal{M}}_{FA}(s_{12}, s_{13})$ from CP-conjugate decay
- Construct the following Dalitz plot observables

$$
\mathcal{X}(s_{12},s_{13}) = |\mathcal{M}_{FA}(s_{12},s_{13})|^2 + |\overline{\mathcal{M}}_{FA}(s_{12},s_{13})|^2 \rightarrow \text{available for all decays}
$$

 $\mathcal{Y}(s_{12},s_{13})=|\mathcal{M}_{\rm FA}(s_{12},s_{13})|^2-|\overline{\mathcal{M}}_{\rm FA}(s_{12},s_{13})|^2\to$ available *in principle* for all decays

 $\mathcal{Z}(s_{12},s_{13})= \text{Im}\left[\mathcal{M}^*_{\text{FA}}(s_{12},s_{13})\overline{\mathcal{M}}_{\text{FA}}(s_{12},s_{13})\right]\to$ only available for *flavor neutral* final states

Example final states for $\mathcal{Z}: K_S K^+ K^-, K_S \pi^+ \pi^-$

• Consider an N-dimensional vector with a single index $i = 1, 2, 3, \ldots N$

 OQ

 \equiv

 $\mathcal{A} \equiv \mathcal{B} \rightarrow \mathcal{A} \stackrel{\text{def}}{\Rightarrow} \mathcal{B} \rightarrow \mathcal{A} \stackrel{\text{def}}{\Rightarrow} \mathcal{B} \rightarrow \math$

- Consider an N-dimensional vector with a single index $i = 1, 2, 3, \ldots N$
- \bullet $N \times N$ is then a two-index tensor and can be represented by an $N \times N$ matrix

 \equiv

 OQ

イロト イタト イラト イラト

- Consider an N-dimensional vector with a single index $i = 1, 2, 3, \ldots N$
- \bullet $N \times N$ is then a two-index tensor and can be represented by an $N \times N$ matrix
- Symmetric part: N diagonal elements + $(N^2 N)/2$ off-diagonal = $N(N + 1)/2$
- Antisymmetric part: $(N^2 N)/2$ off-diagonal = $N(N-1)/2$

- Consider an N-dimensional vector with a single index $i = 1, 2, 3, \ldots N$
- $\bullet\;N\times N$ is then a two-index tensor and can be represented by an $N\times N$ matrix
- Symmetric part: N diagonal elements + $(N^2 N)/2$ off-diagonal = $N(N + 1)/2$
- Antisymmetric part: $(N^2 N)/2$ off-diagonal = $N(N-1)/2$
- For $N = 8$: 36 symmetric $+$ 28 antisymmetric

In SU(3): $8 \times 8 = (27 + 8 + 1)_{sym} + (10 + 10^* + 8)_{antisym}$

- Consider an N-dimensional vector with a single index $i = 1, 2, 3, \ldots N$
- \bullet $N \times N$ is then a two-index tensor and can be represented by an $N \times N$ matrix
- Symmetric part: N diagonal elements + $(N^2 N)/2$ off-diagonal = $N(N + 1)/2$
- Antisymmetric part: $(N^2 N)/2$ off-diagonal = $N(N-1)/2$
- For $N = 8$: 36 symmetric $+$ 28 antisymmetric

In SU(3): $8 \times 8 = (27 + 8 + 1)_{sym} + (10 + 10^* + 8)_{antisym}$

 \bullet FS/FA more complicated – check symmetry by explicit construction

FS \supset $(27 + 8 + 1) \times 8 \rightarrow 64 + 27 + 10 + 10^* + 8 + 1$

FA \supset $(10 + 10^* + 8) \times 8 \rightarrow 27 + 10 + 10^* + 8 + 1$

5 decays depend on 6 RMEs

Decay		$V_{cb}^*V_{cs}$	$V_{ub}^* V_{us}$							
Amplitude							$B_1^{(fa)}$ $B^{(fa)}$ $A_1^{(fa)}$ $A^{(fa)}$ $R_8^{(fa)}$ $R_{10}^{(fa)}$ $P_8^{(fa)}$ $P_{10^*}^{(fa)}$ $P_{27}^{(fa)}$			
$\sqrt{2}A(B^+\to K^+\pi^+\pi^-)_{\text{FA}}$	$\overline{0}$	$\frac{\sqrt{2}}{\sqrt{5}}$	$\mathbf{0}$	$\frac{\sqrt{2}}{\sqrt{5}}$	$\frac{\sqrt{2}}{\sqrt{15}}$	$\frac{\sqrt{2}}{\sqrt{3}}$	$-\frac{3\sqrt{2}}{5}$	$\overline{0}$	$\frac{6\sqrt{3}}{5}$	
$A(B^+\to K^0\pi^+\pi^0)_{FA}$	$\overline{0}$	$-\frac{\sqrt{2}}{\sqrt{5}}$	$\overline{0}$	$-\frac{\sqrt{2}}{\sqrt{5}}$	$-\frac{\sqrt{2}}{\sqrt{15}}$	$\frac{1}{\sqrt{6}}$	$\frac{3\sqrt{2}}{5}$	$\overline{0}$	$-\frac{\sqrt{3}}{5}$	
$\sqrt{2}A(B^0 \to K^0 \pi^+ \pi^-)_{FA}$	$\boldsymbol{0}$	$-\frac{\sqrt{2}}{\sqrt{5}}$	$\overline{0}$	$-\frac{\sqrt{2}}{\sqrt{5}}$	$\frac{\sqrt{2}}{\sqrt{15}}$	$\frac{\sqrt{2}}{\sqrt{3}}$		θ	$\frac{2\sqrt{3}}{5}$	
$A(B^0 \to K^+ \pi^0 \pi^-)_{FA}$	θ	$\frac{\sqrt{2}}{\sqrt{5}}$	$\mathbf{0}$	$\frac{\sqrt{2}}{\sqrt{5}}$	$\frac{\sqrt{2}}{\sqrt{15}}$	$\frac{1}{\sqrt{6}}$		$\mathbf{0}$	$\frac{3\sqrt{3}}{5}$	
$\sqrt{2}A(B^0 \rightarrow K^0 K^+ K^-)_{FA}$	$\overline{0}$		$\mathbf{0}$		$\frac{\sqrt{2}}{\sqrt{15}}$	$\overline{0}$		$\overline{2}$	$\frac{2\sqrt{3}}{5}$	

- \bullet 4 reduced matrix elements:
- $B^{fa}, R_{10}^{fa}, P_{10^*}^{fa}, P_{27}^{fa}$

 \equiv

 OQ

イロト イ部 トイモト イモトー

5 decays depend on 6 RMEs

Decay		$V_{cb}^*V_{cs}$	$V_{ub}^*V_{us}$							
Amplitude		$B_1^{(fa)}$ $B^{(fa)}$ $A_1^{(fa)}$			$A^{(fa)}$ $R_8^{(fa)}$	$R_{10}^{(fa)}$	$P_8^{(fa)}$	$P_{10^*}^{(fa)}$	$P_{27}^{(fa)}$	
$\sqrt{2}A(B^+\to K^+\pi^+\pi^-)_{\text{FA}}$	$\boldsymbol{0}$	$\frac{\sqrt{2}}{\sqrt{5}}$	Ω	$\frac{\sqrt{2}}{\sqrt{5}}$	$\frac{\sqrt{2}}{\sqrt{15}}$	$\frac{\sqrt{2}}{\sqrt{3}}$	$\frac{3\sqrt{2}}{5}$	$\overline{0}$	$\frac{6\sqrt{3}}{5}$	
$A(B^+\to K^0\pi^+\pi^0)_{FA}$	$\overline{0}$	$-\frac{\sqrt{2}}{\sqrt{5}}$	$\overline{0}$	$\frac{\sqrt{2}}{\sqrt{5}}$	$-\frac{\sqrt{2}}{\sqrt{15}}$	$\frac{1}{\sqrt{6}}$	$\frac{3\sqrt{2}}{5}$	$\overline{0}$	$-\frac{\sqrt{3}}{5}$	
$\sqrt{2}A(B^0 \to K^0 \pi^+ \pi^-)_{\text{FA}}$	$\overline{0}$	$\frac{\sqrt{2}}{\sqrt{5}}$	$\overline{0}$	$\frac{\sqrt{2}}{\sqrt{5}}$	$\frac{\sqrt{2}}{\sqrt{15}}$	$\frac{\sqrt{2}}{\sqrt{3}}$	$\frac{\sqrt{2}}{5}$	$\overline{0}$	$\frac{2\sqrt{3}}{5}$	
$A(B^0 \to K^+ \pi^0 \pi^-)_{\text{FA}}$	$\overline{0}$	$\frac{\sqrt{2}}{\sqrt{5}}$	Ω		$\frac{\sqrt{2}}{\sqrt{15}}$	$\frac{1}{\sqrt{6}}$	$\frac{\sqrt{2}}{5}$	θ	$\frac{3\sqrt{3}}{5}$	
$\sqrt{2}A(B^0 \to K^0 K^+ K^-)_{\text{FA}}$	$\overline{0}$		θ			$\overline{0}$	$\frac{\sqrt{2}}{5}$	$\overline{2}$	$\frac{2\sqrt{3}}{5}$	

- \bullet 4 reduced matrix elements:
- $B^{fa}, R_{10}^{fa}, P_{10^*}^{fa}, P_{27}^{fa}$
- Remaining RMEs combine

 \equiv

 $\circledcirc \circledcirc \circledcirc$

 $4\;\;\Box\;\vdash\;\; 4\;\overline{\beta}\hspace{0.2em}\vdash\;\; 4\;\;\overline{\equiv}\;\vdash\;\; 4\;\;\overline{\equiv}\;\vdash\;\;$

5 decays depend on 6 RMEs

Decay		$V_{cb}^*V_{cs}$	$V_{ub}^*V_{us}$							
Amplitude		$B_1^{(fa)}$ $B^{(fa)}$ $A_1^{(fa)}$			$A^{(fa)}$ $R_8^{(fa)}$	$R_{10}^{(fa)}$	$P_{\rm s}^{(fa)}$	$P_{10^*}^{(fa)}$ $P_{27}^{(fa)}$		
$\sqrt{2}A(B^+\to K^+\pi^+\pi^-)_{FA}$	$\overline{0}$	$\frac{\sqrt{2}}{\sqrt{5}}$	0	$\frac{\sqrt{2}}{\sqrt{5}}$	$\frac{\sqrt{2}}{\sqrt{15}}$	$\frac{\sqrt{2}}{\sqrt{3}}$	$\frac{3\sqrt{2}}{5}$	$\overline{0}$	$\frac{6\sqrt{3}}{5}$	
$A(B^+\to K^0\pi^+\pi^0)_{FA}$	$\overline{0}$	$-\frac{\sqrt{2}}{\sqrt{5}}$	0		$-\frac{\sqrt{2}}{\sqrt{15}}$	$\frac{1}{\sqrt{6}}$	$\frac{3\sqrt{2}}{5}$	$\overline{0}$	$-\frac{\sqrt{3}}{5}$	
$\sqrt{2}A(B^0 \to K^0 \pi^+ \pi^-)_{FA}$	$\boldsymbol{0}$	$\frac{\sqrt{2}}{\sqrt{5}}$	$\overline{0}$	$\frac{\sqrt{2}}{\sqrt{5}}$	$\frac{\sqrt{2}}{\sqrt{15}}$	$\frac{\sqrt{2}}{\sqrt{3}}$	$\frac{\sqrt{2}}{5}$	$\overline{0}$	$\frac{2\sqrt{3}}{5}$	
$A(B^0 \to K^+ \pi^0 \pi^-)_{FA}$	$\overline{0}$	$\frac{\sqrt{2}}{\sqrt{5}}$	Ω	$\frac{\sqrt{2}}{\sqrt{5}}$	$\frac{\sqrt{2}}{\sqrt{15}}$	$\frac{1}{\sqrt{6}}$	$\frac{\sqrt{2}}{5}$	$\overline{0}$	$\frac{3\sqrt{3}}{5}$	
$\sqrt{2}A(B^0 \rightarrow K^0 K^+ K^-)_{FA}$	$\overline{0}$		θ		$\frac{\sqrt{2}}{\sqrt{15}}$	$\overline{0}$		$\overline{2}$	$\frac{2\sqrt{3}}{5}$	

- \bullet 4 reduced matrix elements:
- $B^{fa}, R_{10}^{fa}, P_{10^*}^{fa}, P_{27}^{fa}$
- Remaining RMEs combine
- 6 total combinations of RMEs

• 2 combinations of 3 remaining RMEs:

$$
\bullet \quad \frac{\sqrt{2}}{\sqrt{5}} A^{fa} + \frac{\sqrt{2}}{\sqrt{15}} R_8^{fa} - \frac{3\sqrt{2}}{5} P_8^{fa}
$$

$$
\sqrt{\frac{\sqrt{2}}{\sqrt{5}}}A^{fa} - \frac{\sqrt{2}}{\sqrt{15}}R_8^{fa} + \frac{\sqrt{2}}{5}P_8^{fa}
$$

-1

 \overline{m}

[Figure taken from the PDG review on BBN](https://pdg.lbl.gov/2021/reviews/rpp2021-rev-bbang-nucleosynthesis.pdf)

•
$$
\eta_{\text{Observed}} \sim 6 \times 10^{-10}
$$
; $\eta_{\text{SM}} = n_B/n_\gamma \lesssim 10^{-18}$

 \rightarrow Farrar and Shaposhnikov, Phys. Rev. D [50, 774 \(1994\)](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.50.774)

 $\left\{ \begin{array}{c} \square \end{array} \right\}$

 \mathbb{R}^2 $\leftarrow \Xi \rightarrow$ \rightarrow \equiv \equiv

 $\circledcirc \circledcirc \circledcirc$

- [Figure taken from the PDG review on BBN](https://pdg.lbl.gov/2021/reviews/rpp2021-rev-bbang-nucleosynthesis.pdf)
- \bullet $\eta_{\text{Observed}} \sim 6 \times 10^{-10}$; $\eta_{\text{SM}} = n_B/n_{\gamma} \leq 10^{-18}$
	- \rightarrow Farrar and Shaposhnikov, Phys. Rev. D [50, 774 \(1994\)](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.50.774)

 \leftarrow \equiv

 \rightarrow \Rightarrow

 \equiv

 $\circledcirc \circledcirc \circledcirc$

 \bullet Observed BAU \gg theory \rightarrow Baryon Asymmetry puzzle

- [Figure taken from the PDG review on BBN](https://pdg.lbl.gov/2021/reviews/rpp2021-rev-bbang-nucleosynthesis.pdf)
- \bullet $\eta_{\text{Observed}} \sim 6 \times 10^{-10}$; $\eta_{\text{SM}} = n_B/n_{\gamma} \leq 10^{-18}$
	- \rightarrow Farrar and Shaposhnikov, Phys. Rev. D [50, 774 \(1994\)](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.50.774)

 \equiv

 OQ

- \bullet Observed BAU \gg theory \rightarrow Baryon Asymmetry puzzle
- How can we address this puzzle?

- [Figure taken from the PDG review on BBN](https://pdg.lbl.gov/2021/reviews/rpp2021-rev-bbang-nucleosynthesis.pdf)
- \bullet $\eta_{\text{Observed}} \sim 6 \times 10^{-10}$; $\eta_{\text{SM}} = n_B/n_{\gamma} \leq 10^{-18}$
	- \rightarrow Farrar and Shaposhnikov, Phys. Rev. D [50, 774 \(1994\)](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.50.774)
- \bullet Observed BAU » theory \rightarrow Baryon Asymmetry puzzle
- How can we address this puzzle?
- \blacktriangleright Initial condition: fine tuning \leftrightarrow Wash out during inflation

- [Figure taken from the PDG review on BBN](https://pdg.lbl.gov/2021/reviews/rpp2021-rev-bbang-nucleosynthesis.pdf)
- \bullet $\eta_{\text{Observed}} \sim 6 \times 10^{-10}$; $\eta_{\text{SM}} = n_B/n_{\gamma} \leq 10^{-18}$
	- \rightarrow Farrar and Shaposhnikov, Phys. Rev. D [50, 774 \(1994\)](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.50.774)
- \bullet Observed BAU » theory \rightarrow Baryon Asymmetry puzzle
- How can we address this puzzle?
- ▶ Initial condition: fine tuning \leftrightarrow Wash out during inflation
- ▶ Need dynamical mechanism satisfying [Sakharov Criteria:](http://inspirehep.net/record/51345)
	- \star Out of equilibrium transitions
	- [⋆] B violation
	- \star C and CP Violation

 $\mathcal{A} \ \overline{\Rightarrow} \ \mathcal{B} \ \ \mathcal{A} \ \overline{\Rightarrow} \ \mathcal{B}$

 \bullet $|PP\rangle$ state is momentum independent

 \equiv

 OQ

イロト イ部 トイモト イモト

Three-body B decays

 \circ $|PP\rangle$ state is momentum independent

 \bullet $|P_1(\vec{p}_1)P_2(\vec{p}_2)P_3(\vec{p}_3)\rangle$

depends on final-state momenta

• 3 light quarks, u, d, s , much lighter than b quark: triplet of SU(3)_F

B Bhattacharya (LTU) Select puzzles in flavor physics December 13, 2023 31/20

 $\circledcirc \circledcirc \circledcirc$

 $4\;\;\Box\;\vdash\;\; 4\;\overline{\beta}\hspace{0.2em}\vdash\;\; 4\;\;\overline{\equiv}\;\vdash\;\; 4\;\;\overline{\equiv}\;\vdash\;\;$

- 3 light quarks, u, d, s , much lighter than b quark: triplet of $SU(3)_F$
- $|u\rangle=$ $\left|3,\frac{1}{3}\right|$ $\frac{1}{3}, \frac{1}{2}$ $\frac{1}{2}, \frac{1}{2}$ $\frac{1}{2}\rangle$, $|d\rangle=$ $\left|3,\frac{1}{3}\right\rangle$ $\frac{1}{3}, \frac{1}{2}$ $\frac{1}{2}, -\frac{1}{2}$ $\left|\frac{1}{2}\right\rangle, \left|s\right\rangle = \left|\mathbf{3},-\frac{2}{3}\right|$ $\frac{2}{3},0,0$
- $\left| \vec{d} \right\rangle = \left| {\bf 3^*}, \frac{1}{3} \right|$ $\frac{1}{3}, \frac{1}{2}$ $\frac{1}{2}, \frac{1}{2}$ $\ket{\textbf{i}}\textbf{r}=\ket{\textbf{i}}$ irre $\textbf{p},Y,I,I_3\rangle$ y $Y=$ hypercharge, $I=$ isospin

- 3 light quarks, u, d, s , much lighter than b quark: triplet of $SU(3)_F$
- $|u\rangle=$ $\left|3,\frac{1}{3}\right|$ $\frac{1}{3}, \frac{1}{2}$ $\frac{1}{2}, \frac{1}{2}$ $\frac{1}{2}\rangle$, $|d\rangle=$ $\left|3,\frac{1}{3}\right\rangle$ $\frac{1}{3}, \frac{1}{2}$ $\frac{1}{2}, -\frac{1}{2}$ $\left|\frac{1}{2}\right\rangle, \left|s\right\rangle = \left|\mathbf{3},-\frac{2}{3}\right|$ $\frac{2}{3},0,0$
- $\left| \vec{d} \right\rangle = \left| {\bf 3^*}, \frac{1}{3} \right|$ $\frac{1}{3}, \frac{1}{2}$ $\frac{1}{2}, \frac{1}{2}$ $\ket{\textbf{i}}\textbf{r}=\ket{\textbf{i}}$ irre $\textbf{p},Y,I,I_3\rangle$ y $Y=$ hypercharge, $I=$ isospin
- $3 \times 3^* =$

- 3 light quarks, u, d, s , much lighter than b quark: triplet of $SU(3)_F$
- $|u\rangle=$ $\left|3,\frac{1}{3}\right|$ $\frac{1}{3}, \frac{1}{2}$ $\frac{1}{2}, \frac{1}{2}$ $\frac{1}{2}\rangle$, $|d\rangle=$ $\left|3,\frac{1}{3}\right\rangle$ $\frac{1}{3}, \frac{1}{2}$ $\frac{1}{2}, -\frac{1}{2}$ $\left|\frac{1}{2}\right\rangle, \left|s\right\rangle = \left|\mathbf{3},-\frac{2}{3}\right|$ $\frac{2}{3},0,0$
- $\left| \vec{d} \right\rangle = \left| {\bf 3^*}, \frac{1}{3} \right|$ $\frac{1}{3}, \frac{1}{2}$ $\frac{1}{2}, \frac{1}{2}$ $\ket{\textbf{i}}\textbf{r}=\ket{\textbf{i}}$ irre $\textbf{p},Y,I,I_3\rangle$ y $Y=$ hypercharge, $I=$ isospin
- $\mathbf{3} \times \mathbf{3}^* = \mathbf{1} + \mathbf{8}$: These are the 3 pions, 4 kaons, η, η'
- $\ket{\pi^+}=\ket{u\bar{d}}=\ket{\bf 8,0,1,1}$ Similarly other pions and Kaons are also octets

A O D A (FIDA A IF A IF A O Q O

- 3 light quarks, u, d, s , much lighter than b quark: triplet of $SU(3)_F$
- $|u\rangle=$ $\left|3,\frac{1}{3}\right|$ $\frac{1}{3}, \frac{1}{2}$ $\frac{1}{2}, \frac{1}{2}$ $\frac{1}{2}\rangle$, $|d\rangle=$ $\left|3,\frac{1}{3}\right\rangle$ $\frac{1}{3}, \frac{1}{2}$ $\frac{1}{2}, -\frac{1}{2}$ $\left|\frac{1}{2}\right\rangle, \left|s\right\rangle = \left|\mathbf{3},-\frac{2}{3}\right|$ $\frac{2}{3},0,0$
- $\left| \vec{d} \right\rangle = \left| {\bf 3^*}, \frac{1}{3} \right|$ $\frac{1}{3}, \frac{1}{2}$ $\frac{1}{2}, \frac{1}{2}$ $\ket{\textbf{i}}\textbf{r}=\ket{\textbf{i}}$ irre $\textbf{p},Y,I,I_3\rangle$ y $Y=$ hypercharge, $I=$ isospin
- $\mathbf{3} \times \mathbf{3}^* = \mathbf{1} + \mathbf{8}$: These are the 3 pions, 4 kaons, η, η'
- $\ket{\pi^+}=\ket{u\bar{d}}=\ket{\bf 8,0,1,1}$ Similarly other pions and Kaons are also octets
- \bullet $|P_1P_2P_3\rangle \rightarrow 8 \times 8 \times 8 = 512$
- \bullet 64 + 27 + 10 + 10^{*} + 8 + 1 = 120 fully symmetric under the interchange of any two 8s
- Simple counting: ${}^8C_3 + 2{}^8C_2 + {}^8C_1 = 56 + 56 + 8 = 120$

- 3 light quarks, u, d, s , much lighter than b quark: triplet of $SU(3)_F$
- $|u\rangle=$ $\left|3,\frac{1}{3}\right|$ $\frac{1}{3}, \frac{1}{2}$ $\frac{1}{2}, \frac{1}{2}$ $\frac{1}{2}\rangle$, $|d\rangle=$ $\left|3,\frac{1}{3}\right\rangle$ $\frac{1}{3}, \frac{1}{2}$ $\frac{1}{2}, -\frac{1}{2}$ $\left|\frac{1}{2}\right\rangle, \left|s\right\rangle = \left|\mathbf{3},-\frac{2}{3}\right|$ $\frac{2}{3},0,0$
- $\left| \vec{d} \right\rangle = \left| {\bf 3^*}, \frac{1}{3} \right|$ $\frac{1}{3}, \frac{1}{2}$ $\frac{1}{2}, \frac{1}{2}$ $\ket{\textbf{i}}\textbf{r}=\ket{\textbf{i}}$ irre $\textbf{p},Y,I,I_3\rangle$ y $Y=$ hypercharge, $I=$ isospin
- $\mathbf{3} \times \mathbf{3}^* = \mathbf{1} + \mathbf{8}$: These are the 3 pions, 4 kaons, η, η'
- $\ket{\pi^+}=\ket{u\bar{d}}=\ket{\bf 8,0,1,1}$ Similarly other pions and Kaons are also octets
- \bullet $|P_1P_2P_3\rangle \rightarrow 8 \times 8 \times 8 = 512$

 \bullet 64 + 27 + 10 + 10^{*} + 8 + 1 = 120 fully symmetric under the interchange of any two 8s

- Simple counting: ${}^{8}C_{3}$ + 2 ${}^{8}C_{2}$ + ${}^{8}C_{1}$ = 56 + 56 + 8 = 120
- $H = \mathcal{O}(\bar{b} \to \bar{u}u\bar{s}) + \mathcal{O}(\bar{b} \to \bar{c}c\bar{s})$: $\mathbf{3}^* \times \mathbf{3} \times \mathbf{3}^* = \mathbf{3}^* + \mathbf{6} + \mathbf{15}^*$

- • 3 light quarks, u, d, s , much lighter than b quark: triplet of $SU(3)_F$
- $|u\rangle=$ $\left|3,\frac{1}{3}\right|$ $\frac{1}{3}, \frac{1}{2}$ $\frac{1}{2}, \frac{1}{2}$ $\frac{1}{2}\rangle$, $|d\rangle=$ $\left|3,\frac{1}{3}\right\rangle$ $\frac{1}{3}, \frac{1}{2}$ $\frac{1}{2}, -\frac{1}{2}$ $\left|\frac{1}{2}\right\rangle, \left|s\right\rangle = \left|\mathbf{3},-\frac{2}{3}\right|$ $\frac{2}{3},0,0$
- $\left| \vec{d} \right\rangle = \left| {\bf 3^*}, \frac{1}{3} \right|$ $\frac{1}{3}, \frac{1}{2}$ $\frac{1}{2}, \frac{1}{2}$ $\ket{\textbf{i}}\textbf{r}=\ket{\textbf{i}}$ irre $\textbf{p},Y,I,I_3\rangle$ y $Y=$ hypercharge, $I=$ isospin
- $\mathbf{3} \times \mathbf{3}^* = \mathbf{1} + \mathbf{8}$: These are the 3 pions, 4 kaons, η, η'
- $\ket{\pi^+}=\ket{u\bar{d}}=\ket{\bf 8,0,1,1}$ Similarly other pions and Kaons are also octets
- \bullet $|P_1P_2P_3\rangle \rightarrow 8 \times 8 \times 8 = 512$

 \bullet 64 + 27 + 10 + 10^{*} + 8 + 1 = 120 fully symmetric under the interchange of any two 8s

- Simple counting: ${}^{8}C_{3} + 2{}^{8}C_{2} + {}^{8}C_{1} = 56 + 56 + 8 = 120$
- $H = \mathcal{O}(\bar{b} \to \bar{u}u\bar{s}) + \mathcal{O}(\bar{b} \to \bar{c}c\bar{s})$: $\mathbf{3}^* \times \mathbf{3} \times \mathbf{3}^* = \mathbf{3}^* + \mathbf{6} + \mathbf{15}^*$
- Decay amplitude $=\bra{B}H\ket{PPP}_{\text{FS}}=\sum C_i\bra{3}\mathbf{3^*},\mathbf{6},\mathbf{15^*}\ket{120}_i$ i C_i contains $SU(2)$ Clebsch-Gordan Coefficients and $SU(3)$ isoscalar factors **KEIKEIKE MAG**