Search for a heavy neutral lepton that mixes predominantly with the tau neutrino

Sourav Dey on behalf of the Belle Collaboration

ICHEPAP2023

13 December, 2023

The Apparatus

The KEKB and the Belle Detector

- Belle data taking period: $1999-2010:1040 \text{ fb}^{-1}$
- $\sigma(e^+e^- \rightarrow b\bar{b}) = 1.05 \ nb$
- $\sigma(e^+e^- \rightarrow \tau^+\tau^-) = 0.92 \ nb$
- $\Upsilon(nS)\epsilon[n = 1,...,5]$, use of off resonance data : B factories are also τ factories

Search for a heavy neutral lepton that mixes predominantly with the τ neutrino (NEW RESULT, to be submitted to PRL)

- Neutrino Oscillations: Neutrinos must have mass
- Neutrino masses can be incorporated to SM by introducing RH (Majorana) neutrinos
- Allows to solve some of the outstanding problems of the SM
 - Origin of the SM neutrino masses
 - Non-baryonic dark matter Phys. Lett. B 631, 151-156 (2005)
 - Baryogenesis
- N are sterile: Interacts with ν_{SM} through mixing: $N \leftrightarrow \nu_{SM}$
- Long lifetime of N: due to small m_N and small mixing
- Heavy Neutral Lepton also appears in SUSY, exotic Higgs, GUT...

T. Asaka, S. Blanchet, M. Shaposhnikov,

Heavy Neutral Lepton : Direct searches

$|V_{eN}|^2$, $|V_{\mu N}|^2$, $|V_{\tau N}|^2$ = mixing coefficients of ν_e, ν_μ, ν_τ with N

- Previous experiments explored m_N from 100 MeV to $\sim 1 \text{TeV}$
 - $m_N > m_Z$ Direct searches (a)LHC: $pp \to Nl^{\pm}$
 - $m_N < m_{Z,W}$ DELPHI($Z^0 \rightarrow \nu N$), ATLAS/ $\mathrm{CMS}(W^{\pm} \to Nl^{\pm})$
 - $m_N < m_{B,D,K}$ Belle, LHCb, beam-dump, NA62

arxiv 1502.06541

Heavy Neutral Lepton : Direct searches

 $|V_{eN}|^2$, $|V_{\mu N}|^2$, $|V_{\tau N}|^2$ = mixing coefficients of ν_e, ν_μ, ν_τ with N

- Previous experiments explored m_N from 100 MeV to ~ 1 TeV
 - $m_N > m_Z$ Direct searches @LHC: $pp \to Nl^{\pm}$
 - $m_N < m_{Z,W}$ DELPHI($Z^0 \rightarrow \nu N$), ATLAS/ CMS($W^{\pm} \rightarrow Nl^{\pm}$)
 - $m_N < m_{B,D,K}$ Belle, LHCb, beam-dump, NA62
- All the experiments provide tight limits on $|V_{eN}|^2$, $|V_{\mu N}|^2$

Heavy Neutral Lepton : Direct searches

 $|V_{eN}|^2$, $|V_{\mu N}|^2$, $|V_{\tau N}|^2$ = mixing coefficients of ν_e, ν_μ, ν_τ with N

- Previous experiments explored m_N from 100 MeV to ~ 1 TeV
 - $m_N > m_Z$ Direct searches @LHC: $pp \to Nl^{\pm}$
 - $m_N < m_{Z,W}$ DELPHI($Z^0 \rightarrow \nu N$), ATLAS/ CMS($W^{\pm} \rightarrow Nl^{\pm}$)
 - $m_N < m_{B,D,K}$ Belle, LHCb, beam-dump, NA62
- All the experiments provide tight limits on $|V_{eN}|^2$, $|V_{\mu N}|^2$
- Limits on $|V_{\tau N}|^2$ are much weaker
- This motivates us to overcome the experimental challenges and explore $|V_{\tau N}|^2$

- N decays via the weak neutral current
- This analysis probes $|V_{N\tau}|^2$ directly
- This production mechanism implies $m_N < m_\tau m_\pi$
- N is long-lived for a range of $|V_{N\tau}|^2$ values that we are sensitive to

Full Belle data sample used (836 \pm 12) \times 10⁶ τ pairs

•
$$e^+e^- \rightarrow \tau^+_{tag}\tau^-_{sig}$$

Tag side:
 $\tau^+_{tag} \rightarrow \qquad \pi^+\bar{\nu}_{\tau}$
 $\pi^+\pi^0\bar{\nu}_{\tau}$
Signal side:

$$\tau_{sig} \rightarrow \pi^- N(\rightarrow \mu^+ \mu^- \nu_{\tau})$$

- We look for a $\mu^+\mu^-$ displaced vertex (DV)
- Radial position of DV > 15 cm from the beam axis

DV = Displaced Vertex

IP = Interaction Point

11

$K_{\rm S}^0$ rejection and definition of two signal regions

- $K^0 \to \pi^+ \pi^-$: displaced vertex similar to N: removed the mass region
- We divide the signal region into Low mass and High mass signal region:
 - SRH: $m_{\pi\pi}^{DV} > 0.52 \ GeV/c^2$
 - SRL: $m_{\pi\pi}^{DV} < 0.42 \ GeV/c^2$
- LightN distribution is different from heavy N distribution

more on Analysis Method

•
$$N_{signal} = N_{\tau\tau} \times B(\tau \to \pi N) \times B(N \to \mu^+$$

 \bullet

$^+\mu^-\nu_{\tau}) \times \epsilon$, where ϵ is the efficiency Signal efficiencies in SRH and SRL as a function of $|V_{N\tau}|^2$ and m_N : efficiency map

E

- Full kinematics of the signal-decay chain reconstructed with a two-fold ambiguity(m_{+} and $m_{})$
- In the signal regions targeting heavy and light Ns we observe 1 and 0 events, respectively,
 - in agreement with the background expectation.
 - distribution of signal-MC events with $m_n = 600$ MeV/c^2 in the SRL

8.0

0.6

0.4

0.2

Results

- Uncertainties
 - N branching fraction luminosity
 - decay modeling
 cross section
 - uncertainty on the reconstruction of the two prompt tracks
 - the background yield expectations(largest)
- Handled with the nuisance parameters using CL_s prescription
- Allows for direct measurement of the N mass if a signal is observed

- No significant excess observed
- Stringent limits in 1.3 1.4 GeV/c^2
- For the first time, utilizes the displaced vertex originating from the long-lived Heavy Neutral Lepton decay
- Ability to reconstruct the Heavy Neutral Lepton candidate mass to suppress the background to the single-event level
- We have moved from Belle to Belle II era. With an improved detector, and more data, we hope for an improved result in the future

THANK YOU FOR YOUR ATTENTION

Signal, Control and Validation regions

- Signal region: Reconstruct as $\tau^- \to DV(\to \mu^+ \mu^+)$
- Validation region for Data-MC agreement:

• Reconstruct as $\tau^- \rightarrow DV($

- ο Reconstruct as $τ^-$ → DV(
- Reconstruct as $\tau^- \rightarrow DV($

o Control and validation regions are also divided as CRh, CRl and VRh, VRl (similar to signal region)

$$^{\pm})\pi^{-}$$

• Control region: Reconstruct as $\tau^- \to DV(\to \mu^+ \pi^\pm)\pi^-$ (used in the fit for data-driven background estimate)

$$\rightarrow \mu^{-}\mu^{-})\pi^{+}$$

 $\rightarrow \pi^{+}\pi^{-})\pi^{-}$ with $m_{\pi\pi} < 0.42$ GeV and $m_{\pi\pi} > 0.52$ GeV
 $\rightarrow \pi^{+}\pi^{-})\pi^{-}$ with $0.480 < m_{\pi\pi} < 0.515$ GeV

HNL mass reconstruction

- Despite the neutrino, we can reconstruct the decay chain kinematics completely, up to 2-fold ambiguity.
 - ▶ 12 unknowns: p_{ν}^{μ} , p_{N}^{μ} , p_{τ}^{μ}
 - ▶ 12 constraints:
 - p^{μ} conservation in the τ and N decays (8)
 - Known masses of τ and $\nu_{\tau}(2)$
 - Unit vector from the production point of the π system to that of the DV system, which is the direction of $\vec{p}_N(2)$

Quadratic equation

(Using the square root argument $A_{sq} = b^2 - 4ac$ for cut)

Two HNL mass solutions: m_+, m_-

