Dark matter searches @CMS, LHC CERN

BHAWNA GOMBER UNIVERSITY OF HYDERABAD, INDIA (ON BEHALF OF THE CMS COLLABORATION)

ICHEPAP 2023 11th -15th Dec 2023

Introduction

Existence of dark matter known through its gravitational interactions

Galactic rotation

Weak lensing

Underlying nature of dark matter (DM) remains unknown

There is a well established case for weakly interacting DM particles (WIMPs) Such particles may be **produced in high energy p-p collisions** at LHC!!

Dark Matter

- Favorite collider candidate: WIMP
- Weakly interacting, massive, stable

General collider strategy

Non-interacting particles cause momentum imbalance in the transverse plane of the beam

BHAWNA GOMBER 3

Challenges with Missing Transverse Momentum

Spurious detector signals can cause fake **MET signatures that must be identified** and suppressed.

Anomalous high MET can be due to:

- Particles striking sensors in the ECAL photodetectors
- Beam halo particles
- ECAL dead cells (real energy to have been missed)
- Noise in photodiode & readout box electronics in HCAL

Disclaimer : Presenting sub-set of DM results

Simplified Dark Matter Models

- Dark matter production in pp collisions described using *"simplified models"*
- Capture the essential features of a variety of DM signals through a minimal so parameters

\checkmark s – channel mediators

 \checkmark t – channel mediators

LHC DM Forum iv:1507.00966 Med(m_{med} **g**_{DM} g_q

Parameters:

- Spin/Parity of mediator
- Mediator mass *(M_{med})*
- DM Mass *(M_{DM})*
- Mediator coupling to DM (g)
- Mediator coupling to quarks

MonoJet CMS Result

- v Search for physics with particles that decay *invisibly* in association with
- ü Search is performed in **MonoJet** and **MonoV** categories and combined

MonoJet: Jets come from the fragmentation of a single quark/gluon

Several new physics models predict such an experimental signature at the dete

MonoJet

Signal Region: **Jets + MET**

Background: Z/W+jet, top, dibosons, multijet

- At least one high pT central jet
- Veto events with leptons (e, μ , τ) and photons γ
- MET (Hadronic Recoil) > 250 GeV
- Events are broadly categorized in mono-jet and mono-V based on leading jet pT
- o **Mono-V:** Jet pT (AK8) > 250 GeV
- o **Mono-jet:** Jet pT (AK4) > 100 (150) GeV

CMS Result

We employ semi-data driven technique supported by statistically independe $regions(1e/\mu, 2e/\mu, t, \gamma)$, to constrai normalization of SM backgrounds

Data/background predictions in Control Regions

MonoJet Signal Extraction

- Signal extraction is based on MET distribution, an unconstrained parameter per recoil bin per category and year.
	- Monojet: 22 bins Mono-V: 7 bins
- SR and CRs are linked together with binned transfer factors (TF).
- The TFs are constrained by simulations, within theory and experimental uncertainties.
	- experimental uncertainties on TFs.
	- mixed QCD-EWK corrections and NNLO QCD on TFs

Maximum-likelihood fit

- Theory uncertainties for the V ratios and V+jets corrections are from the Lindert et al paper.
- This fit model is replicated in each category/year, then likelihoods across the categories/years are combined.

Monojet in SR

Selection

p_T^{miss} > 250 GeV, monojet+ monoV Madgraph generator for major bkgs 22 bins 5 CR (2 W, 2 Z, 1 photon) regions split by year **3x22 free floating parameters for monoJet + 3x7 for monoV**

MonoJet Results

Goal is to probe higher masses and lower couplings

Comparison to direct detection experiments

Axial-vector mediator results are translated into 90% CL exclusion limits on the spin-dependent WIMP–nucleon scattering cross section σ SD as a function of the WIMP mass

ATLAS provides WIMP annihilation rate as a function of WIMP mass [backup]

BHAWNA GOMBER

BHAWNA GOMBER

Mono-Z Comparison

Eur.Phy.J.C.81(2021) 13

v **For Simplified DM model (Vector) For 2HDM+a model**

Mediator mass excluded upto 800 GeV Maximal exclusion m_a = 350 GeV and M_H = 1.2 TeV

Mono - Higgs

- o After the discovery of the **Higgs boson (125 GeV)** it is possible to probe the dark matter using this new handle
- o **New massive particle** mediates the **Higgs-DM** interaction
- o Search performed in **five decay channels** and statistically combined \circ bb, $\gamma\gamma$, WW, ZZ, and $\tau\tau$
- o Results interpreted using three simplified models:
	- \circ Z' 2HDM
	- \circ Baryonic Z'
	- \circ 2HDM + a

Mono-Higgs

DM

Final states orthogonal to each other

 \overline{O} F

Dark Higgs (WW)

Model parameters are:

- DM mass: mx,
- Z' mass: mZ',
- dark Higgs mass: ms,
- Z' couplings to quarks (gq)
- Z' couplings to DM (gx),
- the mixing angle between SM and the dark Higgs bosons (sin θ).

Dark Higgs (WW)

DM particles acquire their mass through their interactions with a Dark Higgs boson.

Signal extraction: 3D ML fit to $\Delta R(II)$, mll, mT(lmin + pT)

a.u.

Higgs Invisible

Strong experimental evidence for DM from astrophysical observations. Most studied class of theories predict DM to be a weakly interacting massive particle.

Higgs Portal

VBF Higgs Invisible

New trigger strategy: using jet properties from VBF production in addition to p_T^{miss} trigger.

Using V+jets and γ + jets CRs to constrain major backgrounds (Z(vv)+jet and W(lv)+jets).

BHAWNA GOMBER 14th Dec 2023

VBF Higgs Invisible

- Combination of Run 1 and Run2
	- 95% CL upper limit on the in BR (H \rightarrow invisible) < 0.18 (0.10)

Constraints are compatible with SM $H \rightarrow$ invisible branching ratio. Constraints on spin independent DM-neucleon cross-section

Dark photon in VBF Higgs

Dark photon in VBF Higgs

Dark photon in VBF Higgs

BHAWNA GOMBER 14th Dec 2023

Summary

- \diamondsuit **Performing a variety of searches for new phenomena at the LHC, including searches for dark matter, which provide access to the phase space**
- v **Presented a few new results for CMS, all of which use the full Run2 results**
- **V** No signal observed yet, but more to do! *Need to look everywhere*
- \dots *More exciting Run2 results will be coming out in the comign months ❖ Stay tuned for this and the upcoming Run3!*

Thank You

Backup

MonoZ : Fitting Strategy

Fitting Strategy

- \triangleright ATLAS:
	- \triangleright nonresonant and WZ production normalized from data
	- ► ZZ production not normalized from data, replying on simulation post-facto

 \triangleright CMS:

- nonresonant production normalized from data
- \triangleright Z + jets events in 0 jet and 1 jet categories normalized from data
- \triangleright WZ and ZZ production estimated from data using a single normalization factor
- In large EWK correction uncertainties considered
- \triangleright VV shape: 3 additional nuisances $(\pm 10/20/30\%)$ at low $(80 < p_T^{\text{miss}} < 200 \text{GeV})$, medium $(200 < p_T^{\text{miss}} < 400 \text{GeV})$, and high p_T^{miss} ($p_T^{\text{miss}} > 400 \text{GeV}$) to allow for independent leverage in the fit
- \triangleright Arguable, the last two set of uncertainties are a matter of choice, having both of them is a rather conservative approach

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ → 할 → 9 Q @

Б

OTHER INTREPRETATIONS : CMS MONOJET

CMS has significantly better limits in pseudo-scalar mass exclusion

 \overline{OR}

ATLAS-EXOT-2018-06

CMS and ATLAS pretty much similar limits for spin-1, exclude mediator mass upto 1.95 (2.1) TeV, for CMS(ATLAS), respectively

- CMS produces exclusion in coupling which ATLAS doesn't

EXOTICA WORKSHIP 2021: BHAWNA GOMBER November 22, 2021

Monophoton ATLAS

Table 5: Observed and expected yields from SM backgrounds obtained from the 'simplified shape fit' described in Section 5. The normalisation factors obtained from the fit are also shown. The uncertainty includes both the statistical and systematic uncertainties. The individual uncertainties can be correlated and do not necessarily add in quadrature to equal the total background uncertainty.

Table 6: Summary of the uncertainties $(\%)$ in the background estimate for inclusive SRs after the background-only fit and for exclusive SRs after the 'simplified shape fit'. The individual uncertainties can be correlated and do not necessarily add in quadrature to equal the total background uncertainty.

Monophoton ATLAS

Table 5: Observed and expected yields from SM backgrounds obtained from the 'simplified shape fit' described in Section 5. The normalisation factors obtained from the fit are also shown. The uncertainty includes both the statistical and systematic uncertainties. The individual uncertainties can be correlated and do not necessarily add in quadrature to equal the total background uncertainty.

Towards Run3

v **MonoZ**

- \bullet No major hurdles, uses standard objects/triggers
- \cdot Improve ZZ control region (had low statistics in Run2)
- \bullet Use aggressive approach for theory uncertainty for ZZ
- v Expand 2HDM+a results, include sin(theta) scan, as done by ATLAS
- v **Monojet**
	- \cdot In Run2, electron/photon uncertainties are the leading limitations
		- \triangle Need to do in-house developments for the scale factors
	- * Use of most recent MadGraph which includes NLO QCD & EW corrections, should help with simulation of V+jets background and reduce uncertainties
	- v Better MET trigger turn-on could improve low-mass constraints
	- \bullet For MonoV category, develop trigger which includes boosted tagging
	- v Reinterpretation : Publish full likelihood instead of simplified as ATLAS did for Run2 paper

v **Monophoton**

- v Include more intrepretation, ALP could be one
- \bullet Use new madgraph samples which can include NLO QCD & EW corrections
- v **Hinv**
	- v VBF
		- Recovery of the HF jets -- currently detector issues cost \sim 30% of acceptance
		- \bullet Better trigger based on VBF + MET @ L1 / HLT, including angular cuts to reject QCD online
		- \triangle Theoretical constraints for V+jets background
			- \cdot Not available currently, work with theorists needed
	- \div ttH
		- \triangleleft Re-optimized AK8 taggers for Run-3
		- \bullet Use ML to separate ttH (H->inv) from ttbar

Dark Photon

- Add $U(1)_d$ from hidden sector **Connection between dark sector and SM**
	- Couple with SM via kinetic mixing, ϵ is kinetic mixing coefficient
	- Massive gauge boson $(A/Z_d/\gamma_d)$ \blacksquare
	- ϵ and mass of $(A/Z_d/\gamma_d)$ are key \blacksquare parameters

Search Strategy based on life:

- Small : Prompt, resolved/collimated decay e.g. ÷, \mathbf{L}
- Medium: Resolved/collimated decay e.g. delay \blacksquare LJ, displaced muons
- Long : stable particles, MET signature at \blacksquare colliders

EXOTICA WORKSHIP 2021: BHAWNA GOMBER November 22, 2021

From arXiv:1002.2952

32

Dark Photon: ZH Channel

- Probing a Higgs portal model with dark sector \bullet
	- $\mathbf{H} \rightarrow \mathbf{\gamma} \mathbf{\gamma}_d$ where $\mathbf{\gamma}_d$ is massless dark photon
	- γ_d couples to Higgs through hidden charge sector
	- M_T of photon-MET system is used as discriminating variable
	- Dominate background normalized in control region

Relatively clean final state Limit on $BR < 4.6\%$ at 95% CL for SM $H(\gamma + Inv.)$

EXOTICA WORKSHIP 2021: BHAWNA GOMBER November 22, 2021

33

 Z/γ^*

JHEP 10 (2019) 139

MonoHiggs bb

VBF+photon + MET

Flannig years.

Table 2: Summary of the binning choice in the SRs and CRs.

2HDM+Amodel parameters

The phenomenology of the model is fully determined by 14 independent parameters: the masses of the Higgs bosons h, H, A, and H^{\pm} ; the mass of the mediator a; the mass of the DM particle χ ; the Yukawa coupling strength between the mediator and the DM particle, g_x ; the electroweak VEV, v; the ratio of the VEVs of the two Higgs doublets, tan β ; the mixing angles of the CP-even and CP-odd weak eigenstates, α and θ , respectively; and the three quartic couplings between the scalar doublets and the mediator $(\lambda_{P1}, \lambda_{P2}, \lambda_3).$

The values of some of these parameters are heavily constrained by both electroweak and flavour measurements as well as phenomenological considerations, such as the requirement that the Higgs potential is stable. Further parameter choices are driven by the desire to simplify the phenomenology of the model and reduce the space of independent parameters to be scanned by experimental searches. A summary of the parameter choices and the benchmark scans shown in this note is given in the following. A detailed description of the 2HDM+a benchmark scans recommended by the LHC Dark Matter Working Group is given in Ref. $[22]$.

The following parameter settings are common to all benchmark scans shown in Section 6. The coupling g_x is set to unity with a negligible effect on the shapes of the kinematic distributions of interest. As mentioned above, the alignment limit $(cos(\beta - \alpha) = 0)$ is assumed, and hence $m_h = 125$ GeV and $v = 246$ GeV. The quartic coupling $\lambda_3 = 3$ is chosen to ensure the stability of the Higgs potential for our choice of the masses of the heavy Higgs bosons which are themselves fixed to the same value $(m_A = m_H = m_{H^{\pm}})$ to simplify the phenomenology and evade the constraints from electroweak precision measurements $[21]$. The other quartic couplings are also set to 3 in order to maximise the trilinear couplings between the CP-odd and the CP-even neutral states

BHAWNA GOMBER

 \bullet

14th Dec 2023

Dark photon : VBF H + photon + p_T^{miss}

CMS-EXO-20-005

Combination with analysis where H produced in association with a Z boson

For SM-like 125 GeV H boson:

- Another way to search for DM: look for decays of a Higgs boson as the mediator to massless dark photon + SM particles
- Signature: H produced via VBF whose decay produces an isolated \bullet photon, p_T ^{miss}, and two forward jets
- First search for decays to undetected particle and isolated photon in the VBF channel

Dark photon model

PhysRevLett.124.131802