

EXOTIC SEARCHES AT THE LHC

SHILPI JAIN TATA INSTITUTE OF FUNDAMENTAL RESEARCH, MUMBAI

11th Dec - 15th Dec, 2023 International Conference on High Energy Particle & Astroparticle Physics

LHC so far

- > 73 fb⁻¹ delivered in Run 3(2022+2023)
- Many measurements and searches done by all the experiments at LHC
 - With the discovery of Higgs boson 11 years back, SM seems complete

The Standard Model till now

 Similar plot exists for CMS as well

Excellent agreement with the SM across various energies

However, SM
 is not the
 complete
 model
 because ...

Unexpected observation/open standing questions not explained in the SM4

Galactic rotation curves

Gravitational lensing

Bullet cluster

 Observations from noncollider experiments on new physics

Questions not answered by the SM

- Unification of the gauge couplings: Why are gauge couplings different at the energies that we probe? Do they unify at higher scale?
- No treatment for gravity
- Hierarchy problem, origins of generations etc

- Many questions to be answered
- SM cannot be the ultimate fundamental theory

Look for Beyond the Standard Model Physics

We do not know which direction to take and hence plethora of searches

Similar plot exists for ATLAS as well

Which direction to go?

- In the absence of strong presence of new physics signature in any sector, we do not know which direction to take
- In the recent years, an increasing number of hints, anomalies or excesses for BSM physics have been reported
- They span over a huge energy range
 - precision measurements of muon properties (g-2)
 - Semi-leptonic B meson decays
 - Measurement of W boson mass

Direct LHC searches

- We can filter out searches which have shown some anomalies or excesses above 3σ and check what CMS and ATLAS see
 - Helps us set some direction
 - Main theme of today's talk

Dijet Resonances

- Model independent search for a narrow or broad resonance
 - Produced in s-channel by gluon-gluon fusion or quarkantiquark annihilation, or quark-gluon scattering, further decaying to two jets
- Benchmark models: New gauge bosons (W', Z'), dark matter mediators, RS graviton etc
- Have been done in CMS and ATLAS since Run I

- Main background: QCD multijet production
 - Estimated by fitting the the m_{jj} distribution with an empirical functional form
- Strategy:
 - Combine R = 0.4 jets into wide jets if they have dR < 1.1</p>
 - collect final state radiation to improve the mass resolution
- 2 events were seen with m_{jj} ~8 TeV in 2017 in CMS
- Checked for detector and reconstruction pathologies

Characteristics of one of the unusual event

Probability of getting such an event from QCD ~ 10⁻⁴.

This led to the start of dedicated paired jet search in CMS

Paired Dijet resonant searches

 New physics models: <u>Diquark</u> (S_{uu}) decaying to vector-like quarks (which further decay to a quark (u) and a gluon)

$$\Delta R = |(\Delta R_1 - 0.8)| + |(\Delta R_2 - 0.8)|.$$

Determines which jets to be paired

To reduce background and wrong combinations:

- After pairing, each pair of jets should satisfy dR < 2.0 to reject QCD background
- $|\Delta \eta| < 1.1$ (between the two dijet pairs)

Asymmetry in dijet mass (property of pairs of identical resonances) = $\frac{m_1 - m_2}{m_1 + m_2} < 0.1$

Bin in a=m_{jj}/m_{4j} (avoid correlations), fit m_{4j} for resonant search

Paired Dijet resonant searches

- Two candidate events found with m_Y ~ 8 TeV and 8.6 TeV and m_x ~ 1.8 TeV and 2 TeV
- Local significance ~3.9 σ with global significance of 1.6 σ considering resonant

Paired dijet non-resonant searches

Non-Resonant

- New physics models: R-parity violating SUSY.
- Same strategy as in the resonant search but fit m_{jj} for the search
- One candidate events found with m_x ~ 0.95 TeV
- Local significance ~ 3.6σ with global significance of 2.5σ considering non-resonant searches

What about ATLAS - paired dijet searches?

- Prompted by the slight excess seen by CMS in paired dijet searches, ATLAS has very recently investigated the paired dijet final state as well
- Similar search strategy as in CMS
- Highest observed 4 jet mass = 6.6 TeV corresponding to dijet mass = 2.2 TeV

Leptoquarks are hypothetical particles that couple to both a quark and a lepton of a given generation

- Carry both baryon and lepton quantum numbers and have fractional electric charge
- > Predicted by many theories: grand unification, technicolor frameworks, compositeness etc
- LQs can be produced
 - In pairs via gluon-gluon fusion, quark-antiquark annihilation
 - Singly via quark-gluon fusion
- Production and decay determined by:
 - ▶ LQ mass m_{LQ}
 - Yukawa couplings λ to lepton and quark
 - Branching fractions β to a given lepton and quark flavors
 - coupling parameter κ in case of vector LQs (coupling with the SM gauge fields)

Why look at lepto-quarks?

- ▶ $R(D^*)$ combined is 3.1 σ deviation (B->D* τb)
- LQ models can explain the Lepton Flavour Universality Violation: a LQ that couples most strongly to third-generation fermions could explain
 - second and third generation LQs are especially important in the above context

2308.07826

16

CMS: Leptoquark coupling to a T lepton and a b quark

- Single and pair production of scalar and vector LQs decaying to two τ leptons and at least a b quark
- ▶ Non-resonant production of ⊤lepton pair
- Several decay channels of τ lepton pair: (τ_h τ_h), (eτ_h, μτ_h) and (eµ, µµ)
 - (eµ, µµ) is primarily to constrain the SM background
- Sort search variables by sensitivity
- Resonant channels (single and pair): Two high-pT T leptons
 + one or two high-pT b quarks. Sensitive variable:
 - ► $S_T^{MET} = P_T(T_1) + P_T(T_2) + P_T(j_{leading}) + P_T^{miss}$
 - Further categorized: 0bjet and >=1bjet
- Non-resonant channels: Two high-pT T leptons in the final state. No jets above pT > 50 GeV required in this category.
 Sensitive variable:
 - χ = exp(|η(τ₁) η(τ₂)|) -> angular separation between the two τ lepton candidates
 - New physics process lies at low χ values (background has flat distribution)
- Driven by non-resonant signal

 Main backgrounds: tt
, single t, DY+jets, W+jets, diboson and QCD

Further categorization in bins of $m_{\mbox{vis}}$

Leptoquark coupling to a T lepton and a b quark 2308.07826 17

This excess is observed in all the channels in both the STMET and χ distributions

LQ masses below 1.50 (1.82) TeV for the vector model λ =1 and a coupling parameter κ = 0 (1)

Binned maximum likelihood of S_T^{MET} and χ

UL on the

- $\sigma^{\text{tot}} \equiv \sigma^{\text{single}} + \sigma^{\text{pair}} + \sigma^{\text{nonres}}.$
- Excess seen in the non-resonant channel
- Further studies showed that it is coming from 0b jet category
- Local significance ~ 2.8. This excess is consistent with LQ model of mass 2 TeV and λ=2.5
 - Similar with the global significance
- Limits on mass (for vector-like): For λ =1.0 masses below 1.50 TeV and λ = 2.5 masses below 1.73 TeV are excluded

Best-fit signal xsec to all the categories

Signal	$m_{\rm LQ} = 1400{\rm GeV}$		$m_{\rm LQ} = 2000 {\rm GeV}$	
orgitar	$\sigma_{\rm fit}$ [fb]	Z	$\sigma_{\rm fit}$ [fb]	z
Scalar				
Pair	$0.46\substack{+0.51 \\ -0.49}$	1.0	$0.39\substack{+0.45 \\ -0.43}$	0.9
Single, $\lambda = 1$	$1.32\substack{+1.03 \\ -0.99}$	1.3	$0.84\substack{+0.73 \\ -0.70}$	1.2
Single, $\lambda = 2.5$	$8.7^{+6.0}_{-5.7}$	1.5	17^{+12}_{-11}	1.5
Nonres.	92^{+44}_{-38}	2.8	83^{+39}_{-34}	2.8
Total, $\lambda = 1$	$2.3^{+2.1}_{-2.0}$	1.2	$10.3^{+7.1}_{-6.4}$	1.6
Total, $\lambda = 2.5$	47^{+25}_{-22}	2.4	78^{+37}_{-32}	2.8
<i>Vector,</i> $\kappa = 0$				
Pair	$0.46\substack{+0.51 \\ -0.48}$	1.0	$0.41\substack{+0.44\\-0.42}$	1.0
Single, $\lambda = 1$	$1.20\substack{+0.96 \\ -0.92}$	1.3	$0.81\substack{+0.71 \\ -0.68}$	1.2
Single, $\lambda = 2.5$	19^{+13}_{-12}	1.6	31^{+22}_{-22}	1.5
Nonres.	71^{+34}_{-29}	2.8	62^{+30}_{-26}	2.7
Total, $\lambda = 1$	$1.8^{+1.7}_{-1.6}$	1.1	$8.2^{+5.7}_{-5.2}$	1.6
Total, $\lambda = 2.5$	47^{+24}_{-21}	2.5	62^{+31}_{-26}	2.7
Vector, $\kappa = 1$				
Pair	$0.46\substack{+0.51 \\ -0.48}$	1.0	$0.41\substack{+0.44\\-0.42}$	1.0
Single, $\lambda = 1$	$1.20\substack{+0.96 \\ -0.92}$	1.3	$0.81\substack{+0.71 \\ -0.68}$	1.2
Single, $\lambda = 2.5$	$9.8^{+7.0}_{-6.7}$	1.5	24^{+19}_{-18}	1.3
Nonres.	71^{+34}_{-29}	2.8	62^{+30}_{-26}	2.7
Total, $\lambda = 1$	$0.72\substack{+0.75 \\ -0.72}$	1.0	$1.8^{+1.6}_{-1.5}$	1.2
Total, $\lambda = 2.5$	$12.5_{-7.5}^{+8.3}$	1.7	48^{+25}_{-22}	2.5

A related excess in the MSSM sector

arXiv:2208.02717 18

- Search for $\varphi > \tau \tau$ using (additional spin 0 state) $m_T^{\text{tot}} = \sqrt{m_T^2(\vec{p}_T^{\tau_1}, \vec{p}_T^{\tau_2}) + m_T^2(\vec{p}_T^{\tau_1}, \vec{p}_T^{\text{miss}}) + m_T^2(\vec{p}_T^{\tau_2}, \vec{p}_T^{\text{miss}})}$
 - Also provides a vector LQ interpretation
- ▶ 0 bjet category with S^{MET} > 800 GeV
- ightarrow m_{ϕ} = 1200 GeV: 2.8 σ local, 2.4 σ global
- Driven by "no b tag region" (no jet requirement)
- Seemingly quite compatible something to keep eyes on!

Leptoquark

What about ATLAS?

- Variable used: $S_T = P_T(\tau_1) + P_T(\tau_2) + P_T(j_{leading})$
- Upper limit on the cross-section of vector like leptoquarks produced via either single plus non-resonant production, or considering all production
 - For λ =1.0 masses below 1.58 TeV and λ = 2.5 masses below 2.05 TeV are excluded

Excess in High pT dilepton tails in 1st and the 2nd generation leptons

Tes of the second

non-resonant

- Many models predict high pT di-lepton tails and may violate lepton flavour universality
- New neutral gauge bosons predicted by several models. E.g.:
 - Spin-1 mediators between SM and dark matter particles, spin-2 gravitons in RS model etc. LFUs can also be tested
 - Can result in resonance in RS model or overall nonresonant excess of events at high mass in ADD model
- Non-resonant: Four-fermion contact interaction, graviton

Resonant ee, µµ searches - CMS

- Models considered: Z', spin-2 gravitons and spin 1 DM mediators (which mediates between SM and the DM particles)
 - Models like ADD can give excess of events in the tails (series of mass degenerate excitations) whereas RS can give rise to mass resonance
- Select high-pT ee, μμ
- **)** Dominant sources of backgrounds: DY, $t\bar{t}$, QCD, W+jets, diboson etc
 - jet -> lepton estimated from data driven method (overall contribution is 1-3%)
- \blacktriangleright Good data-MC agreement over whole range, except small excess for M_{ee} > 1.8 GeV

More on the event count

$m_{\rm ee}$ range	Observed	Total	DY	Other prompt	Jet mis-
[GeV]	yield	background		lepton backgrounds	identification
60–120	28194452	28200000 ± 710000	28000000 ± 710000	153000 ± 8000	11300 ± 5700
120-400	912504	942000 ± 37000	744000 ± 31000	179000 ± 11000	18900 ± 9500
400-600	16192	16400 ± 770	10900 ± 477	4910 ± 340	534 ± 267
600-900	3756	3660 ± 190	2800 ± 150	757 ± 52	103 ± 51.4
900–1300	704	696 ± 47	590 ± 42	89.8 ± 6.8	16.0 ± 8.0
1300-1800	135	131 + 12	118 ± 11	11.0 ± 1.0	2 82 + 1 41
>1800	44	29.2 ± 3.6	26.8 ± 3.5	1.60 ± 0.22	0.82 ± 0.41
$m_{\mu\mu}$ range	Observed	Total	DY	Other prompt	Jet mis-
[GeV]	yield	background		lepton backgrounds	identification
60–120	164075	166000 ± 9360	165000 ± 9300	994 ± 89	_
120-400	977714	1050000 ± 60400	836000 ± 47000	210000 ± 19000	3070 ± 1540
400-600	24041	26100 ± 1580	16700 ± 970	9120 ± 820	212 ± 106
600–900	5501	5610 ± 337	4170 ± 250	1370 ± 120	74.0 ± 37.0
900-1300	996	1050 ± 65	863 ± 52	169 ± 15	19.9 ± 10.0
1300–1800	183	195 ± 13	169 ± 10	19.9 ± 1.8	6.7 ± 3.4
>1800	42	44.3 ± 3.4	38.7 ± 2.5	3.3 ± 0.3	2.2 ± 1.1

Quantifying differences between data and simulation

- Unbinned maximum likelihood fit to perform the statistic alanalysis (simultaneously for the electron and muon channel)
- Signal shape: Convolution of Breit-Wigner function and double-sided crystal ball
- Background model: Functions fitted to the background estimates to determine the initial fit parameters
- Background only local p-values are shown
- \blacktriangleright Global ~ 0.9 σ between 700 and 800 GeV

Non-resonant searches in high mass tails

- Signal model: Fourfermion contact interaction, and spin-2 graviton in ADD model
- Separate m_{II} into bins of cosθ* < 0 and cosθ* > 0 (Colin-Soper frame)
 - Angle between
 negatively charged
 lepton and the z axis
- Highest sensitivity from high mass bins.
- LR with cos(θ*) < 0 has better S/B ratio
- Fit cos(θ*) < 0 and cos(θ*)
 > 0 simultaneously

Non-resonant searches in high pT tails

- Set limit on CI energy scale λ
- Due to binning in cosθ* (and better S/B in cosθ* < 0), weakness in limits in LR/RL (constructive) due to reduced signal compared to LL/RR is recovered
- Limits in electron channel are weaker than those in the muon channel
 - Excess of events seen

Ratio µµ/ee - Lepton Flavour Violation

- First-time test of LFV at TeV scale
- Differential ratio in two bins of η. Data is unfolded
- Departures due to new physics between 200-400 GeV negligible (Greljo and Marzocca)
- To correct for any differences in efficiencies between the two, normalize the above variable in this region to 1

Ratio µµ/ee - Lepton Flavour Violation

slight excess in the

dielectron channel

 Fitted with four fermion contact interaction (that explains Cabibo Angle Anomaly) that generates effects in the neutral and charged current process using

$$\mathcal{L} = \mathcal{L}_{SM} + [C_{\ell q}^{(3)}]_{1111} \left[(\bar{d}\gamma^{\mu} P_L d - \bar{u}\gamma^{\mu} P_L u) \bar{e}\gamma_{\mu} P_L e + (\bar{u}\gamma^{\mu} P_L u - \bar{d}\gamma^{\mu} P_L d) \bar{\nu}\gamma_{\mu} P_L \nu + 2 \left(\bar{d}\gamma^{\mu} P_L u \bar{\nu}\gamma_{\mu} P_L e + \bar{u}\gamma^{\mu} P_L d\bar{e}\gamma_{\mu} P_L \nu \right) \right],$$
(4)

What about ATLAS?: resonant

- Highest observed mass in
 - mee = 4.06 TeV
 - mµµ = 2.75 GeV
- Largest deviation in the
 - ee channel: 774 GeV, local p-value = 2.9σ
 - > $\mu\mu$ channel: 267 GeV, local p-value = 2.4 σ
 - ee+ $\mu\mu$ channel: 264 GeV, local p-value = 2.3 σ

What about ATLAS?: non-resonant

arXiv:2006.12946

- Results recasted to bounds on the [C_{lq}]1111 operator (<u>arXiv:2103.12003</u>)
 - In case of CMS, the authors provided the best fit value of ~1 /(10 TeV)²

Observed bounds in the electron channel slightly weaker than that in the muon channel (as in CMS) due to slight excess of events in the electron channel

Heavy Long-Lived Charged Particles in ATLAS JHEP06(2023)158

Bethe Bloch curve

- Loose energy in the tracker via ionization loss and hence high dE/dx following Bethe Bloch relation
- Trajectories are solely reconstructed by inner tracking system
- dE/dX measurement provided by pixel detector layers and hence agnostic to the decay activity
 - Sensitivity to lifetimes O(1ns) (since pixel is upto 13cm) and mass range from 100 GeV to 3 TeV
- This identification method does not depend on the way LLP interacts in the ATLAS calorimeters
 - results valid for any other LLP model
- Interpretation for pair-production of R-hadrons, charginos and staus

Energy deposited by LLPs

30

Heavy Long-Lived Charged Particles

- Trigger on p_T^{miss} (from neutralinos or gravitinos)
- ▶ Require at least on high-p_T track with various quality and background rejection requirements
- Measure dE/dx (in MeV g⁻¹ cm²) using inner detector:
 - Reconstruct track mass: $m_{dE/dx} = p_{reco}/\beta\gamma$ (<dE/dx>corr)
 - Signal regions: low (1.8 <= dE/dx <= 2.4), high (dE/dx > 2.4)
 - Done for particles with 0.3 <= $\beta\gamma$ <= 0.9;
 - > Low threshold is the noise threshold that is used in the tracker reconstruction for readout (355 eh pairs)
 - > Higher threshold is just below the regime of MIP (where dE/dX becomes quasi independent of $\beta\gamma$)

Statistical Analysis

CMS analysis in progress

supplementary

7 excess events with 1100 < m < 2800 GeV (expected 0.7 +/- 0.4).
 p-value ~3.6σ for signal mass = 1.4 TeV(global is ~3.3σ)

- Predicted β = 0.5–0.6, but measured β ~ 1 (from ToF, MS, Calo)
- Not consistent with the heavy (and hence slow) LLP hypothesis

- Doubly-charged LLPs have β values compatible with measured dE/dx!
- Resonant production of relatively light daughter particles d from massive particle P –> boosted
- Good match for kinematic properties of excess events

arXiv: 2205.04473

Outlook

- > Many intriguing anomalies have been seen in the last few years with local p-value >~ 3σ
 - > Although history is full of examples where 'bumps' came and went away.
 - In this case, we see a few correlated excesses
- > Do all these excesses or anomalies point to the same solution or multiple solutions
 - Assess to which extensions of the SM these anomalies point to
- Important to keep an eye on Run 3 data to see how these evolve

We just need to keep fitting pieces of a big puzzle together and light will show up!

- Most of the topics covered in this talk are motivated from
 - K.Pedro's talk in Wine and Cheese seminar
 - G.Landsberg's talk in DESY Theory Workshop on Higgs, Flavor, and Beyond

CMS: Search for Wy resonance using hadronic decays of Lorentz-boosted W boson₃₇

- Interpretation: 2HDM, technicolor,
- It is a bump search for a Wγ resonance over a smooth background
- W boson to its hadronic decays, with the final state products forming a single large-radius jet (high Lorentz boost of W)
- Using jet substructure techniques, background from γ+jet is reduced
- Jet mass and the sub-structure variable (N-subjettiness - tells how likely a wide jet is composed of N jets) reduce the backgrounds from QCD

PLB 826 (2022) 136888

- Narrow resonance signal: CB + gaussian
- Broad resonance signal: CB + 2 gaussian
- Bias studies performed for the choice of functional form of the background

Wy resonance: Statistical analysis

- Model specific upper limits on the oxBR for both narrow and broad resonance (both spin-0 and spin-1)
 - Model independent limits are also provided
- Largest excess is seen around 1.58 TeV with a local significance of 2.8 (3.1) σ for narrow (broad) signals for both spin hypotheses
- Global significance is 1.1 (1.7)

 $\sigma \; B \, ({\mathsf X} o {\mathsf W}\gamma)$ at 95% CL [fb]

10

10

0.7

Observed

PLB 826 (2022) 136888

What about ATLAS?

- Similar search in ATLAS.
- Results available with 2015+2016 data
- Smallest local pvalue corresponds to a significance of 2.7σ is found ~2.5 TeV.
 This has a global significance of < 1σ

PhysRevD.98.032015

High mass resonance decaying to a jet and Lorentz boosted resonance

PhysLetB.2022.137263

- Experimental signature: 2 jets
 - Two large-radius (wide) resolved jets, one coming from R2 (R2-jet) and one coming the third parton (P3-jet) with P1, P2 and P3 as gluons
- Focus on $\rho_m = M(R2)/M(R1) < \sim 0.2$
 - > P1, P2 boosted and hence reconstructed as one wide jet
 - Sensitive to M(R1) > 2 TeV
- > Jets reconstructed with $\Delta R = 1.5$ using soft drop technique (pT > 100 GeV)
- Main backgrounds: Multijet QCD production estimated from data driven methods, several parameteric functional forms.

- Search for a high mas hadronic resonance -> parton and Lorentzboosted resonance (decays to a pair of partons)
- > Interpretation: Warper extra dimensions model.
 - High mass resonance is a Kaluza-Klien gluon (decays to radion and gluon) and boosted resonance is radion (further decays to two gluons)
- Done for the first time in the final state of two jets. Previous searches considered tagged with additional jet, photon, or a lepton

High mass resonance decaying to a jet and Lorentz boosted resonance

Events within this cross are used

- Several categories defined in each m(R2)/m(P3) plane for each m(R2)
- Signal modeling: double sided crystal ball
- Parametric function for background:

 $f(x) = p_0 (1-x)^{p_1} / x^{p_2}$

Selection:

|Δη| < 1.3 to reject QCD
 background (t-channel)

- Strategy: Discrimination
 between signal and QCD
 background by exploiting jet
 substructure information and
 kinematics of the decay
- Utilize the 2D plan of m_{Rjet} VS m_{Pjet}
 - Vertical axis of the cross represents wrong tagging of P3 as R2

S+B fit : Largest deviations

supplementary material

- Maximum likelihood fit in the dijet mass performed in the SRs
- Simultaneous fit to m_{jj} spectrum in all the categories
- Largest excess: 1.8 σ global (3.2 σ local) for m(R1) = 2.9 TeV and ρ_m = 0.14

The Standard Model till now

Light to Dark colored bars: 2.76, 5.02, 7, 8, 13, 13.6 TeV, Black bars: theory prediction

See here for all cross section summary plots

Similar plot exists for ATLAS as well Excellent agreement with the SM across various energies However, SM is not the

- Why scalar diquark: Large cross-section due to high probability of finding up quark at high fractional momentum within the proton
- New background estimate: From a control region where the $|\Delta \eta_{jj}|$ is large
- Yields smaller systematic uncertainties when performed in the same dijet mass range as the "fit method".
- Improves the sensitivity for broad resonance by a factor of two depending on resonance mass and width
- ▶ HLT with pT jet > 550 GeV with $dR > 0.8 \parallel H_T > 1050 GeV$
- Wide jet algorithm: Two leading jets are used seeds and other jets as the 'can be clustered jets'. If dR < 1.1 between leading jet and the nearby jet, then they are added to the nearest leading jet to obtain two wide jets
 - Reduces the sensitivity of the analysis to gluon radiation
- Background from t-channel dijet (dominant mode) events has the same angular distribution as Rutherford scattering (proportional to $1/[1-tanh(|\Delta\eta|/2)]^2 \rightarrow peaks$ at large value of $|\Delta\eta|$ (distance in η between the two jets)
 - Signal region is $|\Delta \eta| < 1.1$
- s-channel: decreases with increasing $|\Delta\eta|$

Background estimate in Di-jet for $|\Delta \eta| < 1.1$

- Signal from simulation and background parameterized as shown above.
- Parameters are left floating in the likelihood fit
- Acceptance x efficiency is ~ 10-15%

Dijet – ratio method to estimate the background

- Two control regions are defined in the region $1.1 < |\Delta\eta| < 2.6$
 - > 1.5 < $|\Delta\eta|$ < 2.6 : to predict the main QCD background in the SR
 - 1.1 < |Δη| < 1.5 : constrain theoretical and experimental systematic uncertainties
- Why new method or ratio method for mjj > 2.4 TeV
 - mjj ~ 2pT cosh(|Δη|/2). So lower |Δη| means low mjj for low pT. Trigger is thus efficient for mjj lower dijet mass than in CRs which has higher |Δη| that corresponds to roughly around 2.4 TeV of mjj
 - Hence fit method for mjj < 2.4 TeV and afterwards CRs when trigger makes them more efficient

Binning in a - CMS paired dijet

 Top for resonant analysis and bottom for non-resonant

- 13 (3) bins in a for resonant (nonresonant)
- In resonant, a is an unbiased variable to bin in m4j.
- In nonresonant, a utilizes the signal shape

Statistical checks performed in paired dijet - CMS

- Extensive bias and signal injection tests: no significant bias found for any signal mass hypothesis
- Tests were performed by generating toys from each background function, with or without signal injected, and measuring the signal strength returned by the full (envelope) fitting procedure
- Systematic uncertainty:
 - Signal: JER (~10% on the final four-jet and dijet resolution - gaussian) and JES (~2%), luminosity (~1.6% - lognormal)
 - Background: Uncertainty from the fit
 - > All other sources (e.g. PDFs) are negligible
- Test statistic: Likelihood ratio (CLs method)

Limits for the special case where a=1/4 corresponding to the two high mass events and the highest observed significance

Correlation in observation between resonant and non-resonant search - merged dijet CMS

49

- Most significant signal hypothesis in non-resonant search: Dijet resonance mass of 0.95 TeV, 3.6σ deviation
- Second highest in resonant is ~ 3 TeV in m4j (in alpha = 0.17)

More on the excess of events in dijet search

- ▶ These appear in the bin of 0.22 < a < 0.24 and 0.26 < a < 0.28
- Background only fits are performed using the same function forms but with 5 parameters

First event seen in 2018

- ► $|\Delta \phi| = 3.1$ and $|\Delta \eta| = 0.4$
- Small mass asymmetry = 0.005

Second event seen in 2018

- $|\Delta \phi| = 3.1$ and $|\Delta \eta| = 1.06$
- Small mass asymmetry = 0.02

Inclusive dijet search in CMS and ATLAS

 Both CMS and ATLAS see some events near or above 8 TeV – something to keep an eye on in Run 3!

- HLT: jet with pT > 85 GeV and |η|
 < 2.8
- For 700 GeV < m_{jj} < 1800 GeV, events are required to have y* = (y1-y2)/2 < 0.6</p>
- For $m_{jj} > 450$ GeV, events are required to have $y^* = (y1-y2)/2 < 0.3$ and $E_T > 75$ GeV
 - Selects higher-pT jets at a given mjj and thus provides a mass distribution that is unbiased by the leading jet selection from mjj = 450 GeV

 g_q = coupling to the quarks in Z' model

- Most discrepant interval is 889–1007 GeV
- Corresponds to a global significance of 0.16σ
 however

- No similar paired dijet analysis in ATLAS for resonant search.
- However there is similar for nonresonant search using scouting data (2016)
 - ▶ 450 GeV < m_{jj} < 1800 GeV
- Parametric form to fit the falling background

- Model used to generate LQ:
 - $\widetilde{R_2}$ model for scalar LQs
 - U1 model for vector LQs in which LQs couple only to the left-handed fermions of the third generation
 - These can also couple to q-v in addition to q-l
 - > All signal samples generated with $\beta = 1$, i.e. all decays to q-l
- Kinematic properties independent of λ for λ<1.5, samples with λ=1 are generated.
 For values higher than that, dedicated production
- κ=1 (Yang-Mills) and 0 (minimal coupling) are considered
- In case of non-resonant production via t-channel, no interference with SM DY process
 - Reduction in the signal yield < 5% for λ >1 and hence negligible
- Th > 50 GeB selected in the analysis

- Resonant:
 - Ob jet and 1 bjet
 - Requirement on m_{vis} > 100 GeV to remove DY events
- Non-resonant:
 - ▶ $|\eta_1 + \eta_2|/2 < 1.1$, $|\Delta \eta| < 3$ between two T decay candidates
 - Orthogonal to the resonant category by requiring no jets with pT > 50 GeV and hence is called 0jet category
 - Binned in m_{vis} since signal purity increases with m_{vis}
 - > $\chi = \exp(|\eta(\tau_1) \eta(\tau_2)|)$ as the sensitive variable and measured from $1 < \chi < 30$ implying a maximum value of $|\Delta \eta| = 3.4$

- ▶ $l\tau_h$ and $\tau_h\tau_h$: $j \to \tau_h$ from data-driven others from simulation
 - This method is validated in two validation regions: By inverting the leading jet pT requirement, i.e., pT < 50 GeV and other by using those in which \(\tau_h\) does not pass the tau ID criteria -> good Data MC agreement

eµ and µµ: Similar approach

- The fit of the total LQ signal is performed again, bit with one independent signal normalization parameter in each of the three jet categories (0, 0b, >=1b) while keeping common nuisance parameters.
- For each fitted cross-section, a significance is computed while leaving the other two signal normalization parameters freely floating. For the mLQ = 2000 GeV, λ=2.5, the local significances are 0j and >=1b categories ranging from 2.5 to 3.2 and 1.8 to 2.0 σ. However, for the 0b category, a local significance between 3.4 and 3.7 σ is found for the scalar and vector LQ models.

Systematic uncertainties in LQs

Systematic source	Channel					
	$e\tau_h$	$\mu \tau_{\rm h}$	$ au_{ m h} au_{ m h}$	еµ	μμ	
Normalization						
Integrated luminosity			1.2-2.5%			
Electron ident.	2%		_	2%	_	
Electron trigger	2%		_		_	
Muon ident.	_	2%	_	2%	2%	
Muon trigger	_	2%	_	2%	2%	
$ au_{\rm h}$ trigger	_	_	10%		—	
e misident. as $\tau_{\rm h}$ rate	12%	_	12%		—	
μ misident. as $ au_{ m h}$ rate	_	25%	25%		_	
$p_{\rm T}^{\rm miss}$ scale			Up to 4%			
QCD multijet normalization	_		—	20%	20%	
Z + jets cross section	20	% in \geq	1b, 3% otherwis	se		
tt cross section			5.5%			
W + jets cross section	—		—	6%	6%	
Diboson cross section			6%			
Single top quark cross section			5.5%			
FF norm., 0b	3.0%	2.5%	2.2%		_	
FF norm., $\geq 1b$	2.5%	1.8%	1.7%		_	
FF norm., 0j, $200 < m_{\rm vis} < 400 {\rm GeV}$	1.4%	1.1%	0.3%		—	
FF norm., 0j, $400 < m_{\rm vis} < 600 {\rm GeV}$	3.9%	3.1%	3.0%		—	
FF norm., 0j, $m_{\rm vis} > 600 {\rm GeV}$	4.0%	3.6%	3.0%		—	
Jet energy scale	5% in 0j					
Shape						
$ au_{ m h}$ ident. efficiency	± 1 s.d. in SF — —					
${ au_{ ext{h}}}$ energy scale	± 1 s.d. on the energy scale — —					
μ misident. as τ_{h} energy scale	$\pm 1\%$ on the energy scale — —					
e misident. as $ au_{ m h}$ energy scale	± 1 s.d. on the energy scale — —					
FF shape variations	Syst. shape variations — —					
b tagging efficiency	± 1 s.d. in b tagging SFs					
b tagging mistag rate		± 1 s.d. in b tagging SFs ± 1 s.d. in b tagging SFs				
Jet energy scale	± 1 s.d. in SF in 0b, ≥ 1 b					
Jet energy resolution	± 1 s.d. in SF in 0b, $\geq 1b$					
PDF variations	Envelope of PDF variations					
$\mu_{\rm R} \& \mu_{\rm F}$ variations	Envelope of scale variations					
$Z p_{\rm T}$ reweighting	Weight applied $\pm 50\%$					
Top $p_{\rm T}$ reweighting	$(top p_T weight)^p$ with $p = 5$ or -5					

Post fit plots in LQs (resonance)

 S_T^{MET} distribution in all the 3 channels for 0b and
 =1b jet categories.

- Signal is m_{LQ} = 2000 GeV with λ=2.5 and κ=1 -> normalized to the best-fit xsec
- Binning is such that the total uncertainty in the SM background < 20%</p>

Post fit plots in LQs (non-resonance)

- X distribution in all the 3 channels for 0 jet category.
- Signal is m_{LQ} = 2000 GeV with λ=2.5 and κ=1 -> normalized to the best-fit xsec
- Binning is such that the total uncertainty in the SM background < 20%

ATLAS LQs selection

$ au_{ m lep} au_{ m had}$ Signal Regions	Selection	
SR	ℓ (trigger, isolated), $\tau_{\text{had-vis}}$ (medium τ_{had} -ID), $q(\ell) \times q(\tau_{\text{had-vis}}) < 0$,	
	$\Delta \varphi(t, E_{\text{T}}) < 1.3, m_{\text{vis}}(t, \tau_{\text{had-vis}}) > 100 \text{ GeV}, S_{\text{T}} > 500 \text{ GeV},$ at least one <i>b</i> -jet	
High <i>b</i> -jet <i>p</i> _T SR	SR selection, leading <i>b</i> -jet $p_{\rm T} > 200 \text{ GeV}$	
Low <i>b</i> -jet $p_{\rm T}$ SR	SR selection, leading <i>b</i> -jet $p_{\rm T} < 200 \text{ GeV}$	
$\tau_{\rm had} \tau_{\rm had}$ Signal Regions	Selection	
SR	τ_1 (trigger, medium τ_{had} -ID), τ_2 (loose τ_{had} -ID), $q(\tau_1) \times q(\tau_2) < 0$, $m_{vis}(\tau_1, \tau_2) > 100$ GeV,	
	$S_{\rm T} > 300$ GeV, at least one <i>b</i> -jet	
High <i>b</i> -jet p_{T} SR	SR selection, leading <i>b</i> -jet $p_{\rm T} > 200 \text{ GeV}$	
Low <i>b</i> -jet $p_{\rm T}$ SR	SR selection, leading <i>b</i> -jet $p_{\rm T}$ < 200 GeV	

LeptoQuarks in Lepton Quark collision

- Recent <u>calculation</u> of lepton PDFs at NLO:
 - Xsec unc < 5% for M < 5 TeV</p>
 - xsec scales with λ² -> higher than single
 LQ gluon initiated process
- Larger sensitivity at high mass and coupling

- Common models are Generalized Sequential Model (GSM) containing the sequential SM boson Z'_{SSM}
 - It has SM-like couplings to SM fermions
- LRS extension of the SM based on SU(2)_L X SU(2)_R X U(1)_{B-L} gauge group, B-L refers to the difference the baryon and the lepton numbers
- Narrow width approximation, production cross-section of $Z' = c_u w_u + c_d w_d$, where c's are coupling to the quarks and w's are the pdfs
- With the change of couplings due to mixing of U(1) generators, each class of model has a definite contour in (c_u, c_d) plane
- Also, finite width resonance (12% in width) has similar results as that obtained using narrow width approximation
- DM model: DM interacts with the SM via spin-1 mediator (vector or axial vector)

$$\frac{\mathrm{d}\sigma_{\mathrm{X}\to\ell\ell}}{\mathrm{d}m_{\ell\ell}} = \frac{\mathrm{d}\sigma_{\mathrm{DY}}}{\mathrm{d}m_{\ell\ell}} + \eta_{\mathrm{X}}\mathcal{I}(m_{\ell\ell}) + \eta_{\mathrm{X}}^{2}\mathcal{S}(m_{\ell\ell}),$$

Non-resonant

- Di-electron channel: No opposite charge requirement since that would result in efficiency loss of 10% for masses of several TeVs
- For muons, it is required since the charge misidentification probability is low: 10⁻² for muon momentum of 2 TeV

Sources of systematics in high pT (ee, µµ) search

Source	Uncertainty
Electron selection efficiency	6–8%
Muon selection efficiency	1-2% (two-sided), 0-6.5% (one-sided)
Mass scale uncertainty	0–3%
Dimuon mass resolution uncertainty	8.5–15%

	Impact on background [%]				
Uncertainty source		$m_{\ell\ell} > 1{ m TeV}$		$m_{\ell\ell} > 3 \text{TeV}$	
	ee	μμ	ee	μμ	
Lepton selection efficiency	6.8	0.8	6.4	1.3	
Muon trigger efficiency		0.9	—	0.9	
Mass scale	7.0	2.7	15.4	2.4	
Dimuon mass resolution		0.1	—	0.6	
Pileup reweighting	0.3		0.5	—	
Trigger prefiring	0.5		0.2	_	
PDF	3.7	3.0	9.4	10.2	
Cross section for other simulated backgrounds	0.6	0.8	0.2	0.4	
Z peak normalization	2.3	5.0	2.0	5.0	
Simulated sample size	0.4	0.4	1.3	1.6	

Background fits in the di-electron and di-muon channels

$$\begin{split} m^{\mu} \exp\left(\sum_{i=0}^{2} \gamma_{i} m^{i}\right), & \text{Muon} \\ \text{if } m \leq m_{\text{threshold}}, \\ m^{\nu} \exp\left(\sum_{i=0}^{3} \delta_{i} m^{i}\right), & \text{if } m > m_{\text{threshold}}. \end{split}$$

68

- m_{threshold} is left floating and ranges from 350 to 750 GeV in the muon channel
- In the electron channel, it is set to 600 GeV
- Limits are calculated in a mass window of +/- 4 times the signal width. This window is symmetrically enlarged until there is a minimum of 100 data events in it (10% stat unc)
 - Dominates at high mass
- Background parameterization uncertainty for high mass resonance is a crucial one. Therefore results only above 700 geV

High pT Di-lepton: LFUV

- After normalizing to unity in the region of 200-400 GeV, to account for the remaining mass between the two channels, *R*_{μ+μ-/e+e-} is measured in the simulation of DY events
 (following full chain from selection –> unfolding)
 - Inverse of this correction is used to correct the above quantity in data.
 - Size of these corrections: 5% for central leptons and as large as 20% for forward leptons
- Uncertainties like PDF cancel in the flavour ratio

Resonant ee, µµ searches

• Quote the upper limit on:

$$R_{\sigma} = \frac{\sigma(\mathrm{pp} \to \mathrm{Z}' + \mathrm{X} \to \ell\ell + \mathrm{X})}{\sigma(\mathrm{pp} \to \mathrm{Z} + \mathrm{X} \to \ell\ell + \mathrm{X})}$$

- This cancels/reduces the common uncertainties
- > Exclude mass below 5.15 TeV for the Z' $_{\rm SSM}$ and 4.56 TeV for Z' $_{\psi}$
 - Valid for all widths at high mass (negligible background)

ATLAS dilepton search

background modeling in resonant search $f_{\ell\ell}(m_{\ell\ell}) = f_{\text{BW},Z}(m_{\ell\ell}) \cdot (1 - x^c)^b \cdot x^{\sum_{i=0}^3 p_i \log(x)^i}.$

- Fitted in CR and extrapolated to the SR
- In order to avoid any effects of destructive interference arising in the CR, a gap between the CR and SR is allowed

$W\gamma$ resonance search in CMS in jet+ γ final state

- Signal samples generated for p_m = 0.1 and 0.2 with G_{kk} masses between 2 and 9 TeV in steps of 1 TeV
- Specific choice of g_{grav} and g_{GKK} does not affect the decay kinematics but only modifies the signal cross-section

$W\gamma$ resonance search in ATLAS in jet+ γ final state

74

Systematics in Wy resonance search in CMS

Source	Effect on the signal yield (%)	Combined (%)
Integrated luminosity	2.5/2.3/2.5	1.8
Trigger efficiency	1.0/2.3/1.0	0.9
Photon ident. efficiency	4.7/6.0/3.0	4.4
Pileup	1.0/2.0/1.0	1.3
PDF	2.0	2.0
W tagging efficiency	11/7.4/3.2	3.9
Jet energy scale and resolution [†]	1.3	0.8
Photon energy scale and resolution [†]	0.5/1.0/1.0	0.9
Total	12.6/10.6/5.8	6.7

CMS: Search for right-handed W boson and a heavy neutrinos

- Final state: 2 same-flavor leptons (ee or $\mu\mu$) + 2 quarks
- Motivated by Left-Right symmetric models (to explain parity violation, neutrino mass)
 - Predicts a heavy, right handed gauge boson (heavy partner of the SM W boson): W_R
 - Heavy right-handed neutrino for each lepton flavor: N
- Most extreme p-value occurs in the electron channel for (m_{WR}, m_N) = (6.0, 0.8) TeV with a local (global) significance of 2.9 (2.78)σ

<u>JHEP04 (2022) 047</u>

Figure 4: Summary of the anomalies together with the implications for extending the SM with new particles: Leptoquarks (LQ), vector-like fermions (VLF), electrically neutral scalars (S), neural gauge bosons (Z') and charged gauge bosons (W'). Thick lines indicate that full explanations are possible while thin lines mean that only a partial one is or that conflicts with other observables exist.

Ref: Andreas Crevellin arXiv: <u>2304.01684</u>

Status of charged current LFU

- Results dominated mainly by BABAR because of cleaner environment (neutrino escapes in the detection) in spite of high statistics at Belle and LHC
- b->clv mediated at tree-level in the SM have significant BR (O(-3))
- > The R(D^(*)) is bigger than predicted by the SM by around 20% resulting in $>= 3\sigma$

Neutral current LFU

Fig. 2: Measurements of the e/ μ LFU rations reported by LHCb in December 2022.

This update in 2022 is attributed to a careful estimation of the background. It was identified that a number of unexpected background especially related to misID of pions and kaons as electrons led to low R_K values initially

- Concern b->sµ+µ- and b->se+e-
- LHCb is the leading one since there is no neutrino that escapes detection
- First deviation observed (not in the context of universality) but deviation in the expected angular distribution of the muon pair in B->K*µ+µ-
- ► $R_K = \Gamma(B K\mu + \mu)/\Gamma(B Ke + e) 2.6\sigma$ deviation wrt SM.
 - ▶ $R_{K^{exp}} = 0.745 + / 0.097 \text{ VS } R_{K^{SM}} = 1 \text{ (in 2014 but similar in 2017)}$
 - In 2021, R_K^{exp} = 0.846 +/ 0.044 > 3σ deviation
 - In 2022, R_K^{exp} = 0.949 +/ 0.047 > within 1σ

Run 3 (CMS): LLPs to pair of muons

• $\sqrt{s} = 13 \ TeV$ using 36.7 fb⁻¹ of data

- Experimental signature: Oppositely charged muons originating from a common secondary verctx spatially separated from the pp interaction point by distances ranging from several hundred µm to several meters
- Interpretations:
 - ▶ Hidden Abelian Higgs model where H->Z_D Z_D (Hidden and dark sector)
 - R-parity violating SUSY where LLPs –> μμ+νν

Run 3 (CMS): LLPs to pair of muons

- Analysis strategy: Divide into categories
 - TMS-TMS: Both muons in the tracker and muon system
 - STA-STA: standalone muons
 - STA-TMS
- Improvement in L1 trigger:
 - Run 2: Two muons reconstructed in the muon system alone. pT > 28 and 23 GeV
 - Run 3: Two additional sets:
 - very low muon-pT thresholds, with stringent quality and kinematics requirements
 - New track finding procedure in the L1 muon trigger in the barrel. This reconstructs muon pT without using beam spot constraint

Run 3 (CMS): LLPs to pair of muons

82

$$-\left\langle rac{dE}{dx}
ight
angle = rac{4\pi}{m_ec^2}\cdotrac{nz^2}{eta^2}\cdot\left(rac{e^2}{4\piarepsilon_0}
ight)^2\cdot\left[\ln\!\left(rac{2m_ec^2eta^2}{I\cdot(1-eta^2)}
ight)-eta^2
ight]$$

- Studied: 0.3 < βγ < 0.9</p>
- Very well in the range of heavy LLPs
- Strategy:

11

- Select isolated tracks with high pT, large specific ionization
- Reconstruct mass for
 each track using Bethe
 Bloch parameterization

LLPs ATLAS background determination

CRkin: inverting dE/dx requirement in the signal region

CR-dEdx: inverting E_T^{miss} and removing the dEdX requirement

- Sample 1/pT, η from CR-kin
- Sample dE/dx from the corresponding η bin of CR-dEdx
- Compute m using dEdx and β
- 10-40M toy tracks sampled
- Validation done in validation regions

Statistical Analysis

- ▶ 7 excess events with 1100 < m < 2800 GeV (expected 0.7 +/- 0.4). p-value ~3.6 σ for signal mass = 1.4 TeV(global is ~3.3 σ)
 - 2.4 <= dE/dx <= 3.7 MeV g⁻¹cm²
 - > Predicted $\beta = 0.5-0.6$, but measured $\beta \sim 1$ (from ToF, MS, Calo)
 - Not consistent with the heavy (and hence slow) LLP hypothesis

Another Interpretation

- Doubly-charged LLPs have β values compatible with measured dE/dx!
- Resonant production of relatively light daughter particles d from massive particle P –> boosted
- Good match for kinematic properties of excess events

- Current analysis is model dependent. But the nature may not have this BSM scenario that we test
- Idea is to be model independent
 - But such an analysis may have sensitivity penalized when the search is performed in large number of bins due to look elsewhere effect
- Anomaly detection based analysis.
 - Train model on background enriched sample of data to learn the background typical distribution and thus detect out-of-distribution examples when tested on an independent data sample
- A total of 5 anomaly detection methods which are model agnostic are in place