Physics Prospects of Future Dark Matter Searches *– perspectives on WIMPs*

Nicole Bell The University of Melbourne

ICHEPAP 2023 - 15 Dec 2023 - Nicole Bell, U.Melbourne

Evidence for dark matter

Astrophysical observations consistently point to the need for dark matter

Galaxy rotation curves **Clusters of galaxies** Clusters of galaxies Large Scale Structure

Evidence for dark matter

Astrophysical observations consistently point to the need for dark matter

What do we know?

Dark \rightarrow **coupling to photons absent or highly suppressed.**

Cold (at least approximately): \rightarrow non-relativistic by structure formation era

Distribution in the Universe: approximately understood **Abundance**: about 5 times the energy density of visible matter

Mass: unknown **Couplings**: unknown **Spectrum of dark-sector particles:** unknown

Dark matter model space

Image: Bertone and Tait

Looking for WIMPs

Looking for WIMPs

Indirect detection

Indirect detection – Detecting dark matter annihilation in space

Indirect detection probes the dark matter annihilation cross-section

→**The most direct test of the thermal-relic dark matter paradigm**

Thermal relic cross section (the WIMP miracle):

Relic DM density determined by the annihilation cross section:

$$
\Omega_{\chi} \propto \frac{1}{\langle \sigma v \rangle_{ann}} \sim \frac{m_{\chi}^2}{g_{\chi}^4}
$$

Required annihilation cross section: $\langle \sigma v \rangle_{ann} \sim 2 \times 10^{-26} \text{cm}^3/\text{s}$

Is there room left for WIMPs?

We need WIMPs to annihilate efficiently in the early Universe, but to have escaped detection in direct, indirect and collider searches

Even for models with unsuppressed signals, much of the parameter space has not yet been searched!

The WIMP window

Mass window for thermally produced WIMPs:

 m_{χ} < 100 TeV from Unitarity limit

 m_{χ} > MeV to avoid upsetting BBN

→ **We need to test thermal-relic annihilation cross sections across the full mass window**

Dark matter annihilation signal

Bell, Dolan, Robles, arXiv: 2005.01950

Indirect detection constraints

R. Leane, et al., arXiv:1805.10305

10^{-23} 10^{-22} $\Omega_{\text{WIMP}} = \Omega_{\text{DM}}$ **Unitarity** 10^{-24} 10^{-23} $\frac{5}{6}$
10⁻²⁵
 $\frac{2}{6}$
10⁻²⁶ $\frac{5}{6}$
 $\frac{10^{-24}}{2}$ **Visitole WIMP window** 10^{-27} 10^{-26} Overabundance Fermi 10^{-28} 10^{-27} $10²$ 10^3 10 $10²$ 10^{3} $10⁴$ $10⁵$ 10 0.1 m_x [GeV] m_x [GeV]

Fermi dSph limits Annihilation to "visible" SM states

ICHEPAP 2023 – 15 Dec 2023 – Nicole Bell, U.Melbourne 15 Nicole Bell, 15 Nicole 2023 15

Closing the WIMP window: TeV gamma rays

Projected sensitivity for current generation Cherenkov telescopes (HESS-like)

Montanari, Moulin & Rodd, arXiv:2210.03140

Closing the WIMP window: CTA projections

Mangipudi, Thrane & Balazs, arXiv:2112.10371

ICHEPAP 2023 – 15 Dec 2023 – Nicole Bell, U.Melbourne 17 (1999) and 17 (1999) and 17 (1999) and 17 (1999) and

Closing the WIMP window: Neutrinos

 \circ Indirect detection limits – typically neglect the possibility that dark matter may annihilate to "invisible" or hard-to-detect final states.

o **We must probe annihilation to neutrinos to fully test the WIMP hypothesis.**

Annihilation cross section limits: $\chi \chi \to \nu \nu$

Thermal relic sensitivity for m_{χ} ~30 MeV

NFW – central lines Isothermal – upper Moore - lower

Bell, Dolan, Robles, arXiv: 2005.01950

Annihilation to $\overline{\nu}$ arguelles et al, arXiv: 1912.09486

Direct detection

Direct Detection

Spin-independent (SI) interactions

 \rightarrow strong bounds due to coherent enhancement

Spin-dependent (SD) interactions

 \rightarrow weaker bounds

ICHEPAP 2023 – 15 Dec 2023 – Nicole Bell, U.Melbourne 22

Direct Detection – future challenges

Direct Detection – future challenges

Neutrino floor

Toward the neutrino floor

Next generation liquid noble gas experiments will reach the neutrino floor:

Images from: arXiv:2203.02309

ICHEPAP 2023 – 15 Dec 2023 – Nicole Bell, U.Melbourne 26

DARWIN/XLZD: Generation-3 liquid-Xenon experiment

DARWIN

Images from: arXiv:2203.02309

Gen 3 liquid noble gas experiment

Next generation dark matter experiments will be multi-purpose dark matter/neutrino/astroparticle observatories

Below the neutrino floor: – directional detection

Due to the motion of the solar system, the dark matter signal is aligned with a particular direction on the sky (the direction of the Cygnus constellation).

Directional detection cannot enable us to separate dark matter signal from neutrino background

Vahsen, O'Hare & Loomba arXiv:2102.04596

Directional detection

CYGNUS project: a directional gas TPC

 \rightarrow Dark matter and neutrino applications

Artwork by Sandbox Studio, Chicago with Corinne Mucha

ICHEPAP 2023 – 15 Dec 2023 – Nicole Be

New strategies to probe dark matter scattering

 \triangleright High mass WIMPS \rightarrow new techniques to search below the neutrino floor o Directional detection!

 \triangleright Low mass WIMPS \rightarrow new analyses using existing detectors

- o Migdal effect
- o "Boosted" (i.e. more energetic) dark matter

 \triangleright Low mass WIMPS \rightarrow new experimental techniques with low threshold

 \triangleright Complementary constraints from astrophysics

 \circ Dark matter capture in the Sun, neutron stars, etc.

Migdal effect

The ionization of an atom following a nuclear recoil

Image: M. Dolan et al.

 \rightarrow Useful in cases where the nuclear recoil is below threshold (i.e., low mass dark matter) and we can instead detect the ionization signal

Nuclear recoil:
$$
E_{R,max} = \frac{2\mu_T^2}{m_T} v_{max}^2
$$

Migdal electrons: $E_{EM,max} = \frac{\mu_T}{2} v_{max}^2$
 $\mu_T = DM$ -nucleon reduced mass

Nigdal effect Newstead, Sabharwal,

Weiler, arXiv:1905.00046

Xenon

ICHEPAP 2023 – 15 Dec 2023 – Nicole Bell, U.Melbourne 33

Migdal limits

Migdal limits from DarkSide experiment arXiv:2207.11967

Doping the detector with a lighter element

e.g. Hydrodgen-doped liquid Xenon

 \rightarrow Better kinematics for the scattering of light dark matter \rightarrow Larger recoil energy \rightarrow signal above threshold

Specific proposal : HydroX = upgrade of LZ, by doping with H_2

What if we combine (i) doping with light element and (ii) Migdal effect?

→ The best sensitivity to light WIMPs

Migdal effect in H-doped liquid Xenon Ritter, arXiv:2305.04690

CRESST-III

 $PICO-60$

 $10³$

Migdal effect in H-doped liquid Xenon

Boosted Dark Matter

Halo dark matter

 \rightarrow highly nonrelativistic $v \sim 10^{-3}c$

 \rightarrow low energy recoils in direct detection experiments: $E_{R,max} =$ $2\mu_T^2$ m_T v_{max}^2

Could there be a population of higher-energy dark matter?

- o Boosted DM produced from decay/annihilation of heavier dark states
- **Cosmic-ray upscattered dark matter** ("inverse direct detection")
- DM produced in cosmic ray interactions in the atmosphere ("CR beam dump")
- o Solar reflected dark matter
- o Supernova dark matter (light dark matter produced in galactic supernova)

Cosmic ray up-scattered dark mater (CRDM)

Assume the DM-nucleon scattering cross section is non-zero

→ cosmic rays will *unavoidably* scatter with DM, producing a (small) high energy DM flux.

 \rightarrow Light boosted DM is visible in direct detection experiments

Cosmic ray up-scattered dark matter – sub-GeV masses

Bringmann & Pospelov, PRL 2019

Allows light dark to be constrained using existing experiments.

Note:

- these are BIG cross sections
- DM absorption in the earth imposes upper limit on the cross sections that can be probed

Cosmic ray up-scattered dark mater (CRDM)

Advantages:

- Detectable signals for **light DM** in direct detection experiments
- Energetic enough to be seen in **neutrino experiments** →which have higher energy thresholds, but **significantly larger target mass**
- Removes velocity or momentum suppressions
	- \rightarrow e.g. standard DD expts cannot see pseudoscalar interactions, because $\sigma \propto p^4$

Disadvantages:

• Observable signals scale with **two** powers of the scattering cross section

Questions: How to distinguish heavy non-relativistic DM from light relativistic DM?

• **Directional information** helps

CR-upscattered DM: kinetic energy spectrum

Bell, Newstead and Shaukat Ali, arXiv:2309.11003

Borexing

 10^{-1}

 $-$ scalar

 \equiv vector

- pseudoscalar

- axial-vector

SuperK

 $10⁰$

 $10¹$

ICHEPAP 2023 – 15 Dec 2023 – Nicole Bell, U.Melbourne 42

Boosted DM – neutrino vs direct detection exps.

Dark Matter Capture in Stars

 \rightarrow an alternative approach to Dark Matter Direct Detection experiments

- The Sun
- Neutron Stars
- White Dwarfs

Dark Matter Capture in Stars

→ *an alternative approach to Dark Matter Direct Detection experiments*

- Dark matter scatters, loses energy, becomes gravitationally bound to star
- Accumulates and annihilates in centre of the star \rightarrow neutrinos escape

In equilibrium: Annihilation rate = Capture rate

- \rightarrow controlled by DM-nucleon scattering cross section
- \rightarrow probes the same quantity as dark matter direct detection experiments

Dark matter annihilation in the Sun – Neutrinos

Spin-Independent (SI) Spin-Dependent (SD)

IceCube Collaboration, E. Phys. J. C 77 (2017)

Bell, Dolan & Robles, arXiv:2107.04216

ICHEPAP 2023 – 15 Dec 2023 – Nicole Bell, U.Melbourne 46

Gamma Rays from the Sun \rightarrow long lived dark-sector particles

If captured DM annihilates to a light, long-lived mediator (e.g. a dark photon):

- ➢ Annihilation products can escape the Sun
- ➢ Decay between Sun and Earth → solar gamma rays or cosmic rays (Batell arXiv:0910.1567)
- \triangleright Decay beyond solar core \rightarrow less attenuation of neutrino signal (NFB & Petraki, JCAP 2011)

Annihilation to dark mediators → *Solar gamma rays*

Solar gamma-ray measurements: Fermi-LAT and HAWC

Dark matter annihilation, e.g.:

$$
\chi\chi \to \gamma_D \gamma_D \to e^+e^-e^+e^-
$$

Electron final states radiate photons. Quark final states produce photons via hadronization or decay.

HAWC collaboration, Phys Rev. Lett 131 , 051201 (2023)

Gamma Rays from the Sun

HAWC gamma ray measurements provide strong constraints, for both spin-dependent *and* spin-independent scattering

Neutron Stars

Due to their extreme density, *neutron stars* capture dark matter *very* efficiently.

Capture probability saturates at order unity when the cross section satisfies the **geometric limit**

$$
\sigma_{th} \sim \pi R^2 \frac{m_n}{M_*} \sim 10^{-45} \text{cm}^2
$$

Baryakhtar et al arXiv:1704.01577

Neutron star heating

 \rightarrow from dark matter scattering plus annihilation

- **Capture** (plus subsequent energy loss) → DM *kinetic energy* heats neutron star ∼ **1700K**
- **Annihilation** of thermalised dark matter → DM *rest mass energy* heats neutron star ∼ **additional 700K**

Coolest known neutron star (PSR J2144-3933) has a temperature of \sim 4.2 x 10^4 K

Old isolated neutron stars should cool to below 1000 K after \sim 10 Myr

DM capture in Neutron Stars

Completely different kinematic regime to direct detection experiments, because **DM is relativistic** upon infall to the NS:

• **No velocity/momentum suppression**

→ *Sensitivity to interactions that direct detection experiments will never be able to see*

- Must take momentum dependence of hadronic couplings into account $c_n(q) =$ $c_n(0)$ $\frac{c_n(0)}{1-q^2/Q_0^2}$ with Q_0 ~1 GeV
	- \rightarrow which changes the capture rate by several orders of magnitude Bell, Busoni, Motta, Robles, Thomas, Virgato, PRL 2021

Improved capture calculations

Early treatments of the capture process used various simplifying assumptions.

Important physical effects include:

- o Consistent treatment of NS structure
	- Radial profiles of EoS dependent parameters, and GR corrections by solving the TOV eqns.
- o Gravitational focusing
	- DM trajectories bent toward the NS star
- o Fully relativistic (Lorentz invariant) scattering calculation
	- Including the fermi momentum of the target particle
- o Pauli blocking
	- Suppresses the scattering of low mass dark matter
- o Neutron star opacity
	- Optical depth
- o Multi-scattering effects
	- For large DM mass, probability that a collision results in capture is less than 1
- **Momentum dependence of hadronic form factors**
- o **Nucleon interactions**

NFB, Busoni, Motta, Robles, Thomas, & Virgato, PRL 2021

NS Heating Sensitivity (projected limits)

NS Heating Sensitivity (projected limits)

NS Heating Sensitivity: SD nucleon scattering

DM-neutron (SD scattering) DM-proton (SD scattering)

Anzuini, Bell, Busoni, Motta, Robles, Thomas and Virgato, arXiv:2108.02525

Leptons in Neutron Stars

Beta equilibrium in the core determines the composition:

- Degenerate neutrons
- Smaller and approximately equal electron and proton abundances
- Small muon component

NS Heating Sensitivity: lepton scattering

White dwarfs in M4 globular cluster

DM-nucleon scattering CM-electron scattering

Bell, Busoni, Ramirez-Quezada, Robles & Virgato, arXiv:2104.14367

Testing the thermal-relic hypothesis with indirect detection

- \circ Upcoming observations will make significant progress in closing the WIMP window
- Important to test DM annihilation to neutrinos

Direct Detection

- o *Directional* detection to search below the neutrino floor
- o Migdal effect to probe lower mass DM
- Boosted dark matter to probe low mass DM

Dark matter capture in stars

o Relativistic DM. Probe of low mass dark matter; can look below the neutrino floor