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Physics Prospects of Future Dark Matter Searches 
– perspectives on WIMPs

Nicole Bell
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Evidence for dark matter

Astrophysical observations consistently point to the need for dark matter

Galaxy rotation curves Large Scale StructureClusters of galaxies
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Evidence for dark matter

Astrophysical observations consistently point to the need for dark matter

Galaxy rotation curves Large Scale StructureClusters of galaxies

All are sensitive to dark matter’s gravitational influence.

As yet, very little information on dark matter particle properties.
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What do we know?

Dark → coupling to photons absent or highly suppressed.

Cold (at least approximately):  
 → non-relativistic by structure formation era

Distribution in the Universe: approximately understood
Abundance: about 5 times the energy density of visible matter

Mass: unknown
Couplings: unknown
Spectrum of dark-sector particles:  unknown
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Dark matter 
model space

Image: Bertone and Tait
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Make it

Shake it

Break it 

Looking for WIMPs
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Collider production

Direct detection: 
scattering in DM 

detectors on Earth
(or in neutrino expts, 

or in stars) 

Indirection detection:
 annihilation in the galaxy 

Looking for WIMPs
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Indirect detection
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Indirect detection – Detecting dark matter annihilation in space

Indirect detection probes the dark 
matter annihilation cross-section

→The most direct test of the 
thermal-relic dark matter paradigm
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Relic DM density determined by the 
annihilation cross section: 

Ω𝜒 ∝
1

𝜎𝑣 𝑎𝑛𝑛
~

𝑚𝜒
2

𝑔𝜒
4

Thermal relic cross section (the WIMP miracle):

      𝝌 + 𝝌 ↔ regular matter 

 Required annihilation cross section:

𝜎𝑣 𝑎𝑛𝑛 ∼ 2 × 10−26cm3/s
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Is there room left for WIMPs?      

We need WIMPs to annihilate efficiently in the early Universe, but to have escaped 
detection in direct, indirect and collider searches

Even for models with unsuppressed signals, much of 
the parameter space has not yet been searched! 

Direct detection Suppressed if scattering cross section depends on spin, 
velocity or momentum

Indirect detection Suppressed if annihilation cross section is p-wave

Collider production Suppressed if DM couples to the SM through hidden-sector 
portal interactions  (e.g. a dark photon mediator)
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The WIMP window

Mass window for thermally produced WIMPs:

𝑚𝜒 < 100 TeV  from Unitarity limit

𝑚𝜒 > MeV  to avoid upsetting BBN

→ We need to test thermal-relic annihilation 
cross sections across the full mass window

R. Leane, et al., 
arXiv:1805.10305
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Dark matter annihilation signal

𝑑ΦΔΩ

𝑑𝐸
= 𝜎𝑣

𝐽ΔΩ

8𝜋𝑚𝐷𝑀
2

𝑑𝑁

𝑑𝐸
 

Annihilation
cross section

Integral of 
(density)2 along 
line of sight

Spectrum per 
annihilation

Bell, Dolan, Robles, arXiv: 2005.01950
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Indirect detection constraints
R. Leane, et al., arXiv:1805.10305

Fermi dSph limits Annihilation to “visible” SM states 
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Closing the WIMP window:  TeV gamma rays

Projected sensitivity 
for current generation  
Cherenkov telescopes 

(HESS-like)

Montanari, Moulin & Rodd, 
arXiv:2210.03140
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Closing the WIMP window:  CTA projections

Mangipudi, Thrane & Balazs, arXiv:2112.10371 
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o Indirect detection limits – typically neglect the possibility that dark matter may 
annihilate to “invisible” or hard-to-detect final states.

o We must probe annihilation to neutrinos to fully test the WIMP hypothesis. 

Beacom, Bell, 
Mack, PRL 2007 

Closing the WIMP window:  Neutrinos
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Bell, Dolan, Robles, arXiv: 2005.01950

Annihilation cross section limits:  𝝌𝝌 → 𝝂𝝂

Thermal relic sensitivity 
for 𝑚𝜒~30 MeV 

NFW – central lines 
Isothermal – upper
Moore - lower
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Annihilation to 𝝂𝝂 Arguelles et al, arXiv: 1912.09486
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Direct detection
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Direct Detection

Spin-independent (SI) interactions
→ strong bounds due to coherent enhancement

Spin-dependent (SD) interactions           
→ weaker bounds
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Direct Detection – future challenges
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Direct Detection – future challenges

Larger detectors; 
Lower backgrounds

Lower 
thresholds
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Neutrino floor

arXiv:2203.07361 

C.A.J. O’Hare 
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Toward the neutrino floor

Next generation liquid noble gas experiments will reach the neutrino floor:

Images from: arXiv:2203.02309
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DARWIN/XLZD:  Generation-3 liquid-Xenon experiment 
           

Images from: arXiv:2203.02309
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Next generation dark matter 
experiments will be multi-purpose 
dark matter/neutrino/astroparticle 
observatories

Gen 3 liquid noble gas experiment
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Below the neutrino floor: 
   – directional detection

Due to the motion of the solar 
system, the dark matter signal is 
aligned with a particular direction 
on the sky (the direction of the 
Cygnus constellation).

Directional detection cannot 
enable us to separate dark matter 
signal from neutrino background

Vahsen, O’Hare & Loomba arXiv:2102.04596 
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CYGNUS project: a directional gas TPC

→ Dark matter and neutrino applications

Directional detection

Artwork by Sandbox Studio, Chicago with Corinne Mucha
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New strategies to probe dark matter scattering

➢ High mass WIMPS → new techniques to search below the neutrino floor 
o Directional detection!

➢ Low mass WIMPS → new analyses using existing detectors
o Migdal effect 
o “Boosted” (i.e. more energetic) dark matter

➢ Low mass WIMPS → new experimental techniques with low threshold

➢ Complementary constraints from astrophysics
o Dark matter capture in the Sun, neutron stars, etc.
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Migdal effect

The ionization of an atom following a nuclear recoil

→ Useful in cases where the nuclear recoil is below threshold (i.e., low mass dark matter)       
     and we can instead detect the ionization signal

Nuclear recoil:  𝐸𝑅,𝑚𝑎𝑥 =
2𝜇𝑇

2

𝑚𝑇
𝑣𝑚𝑎𝑥

2

Migdal electrons: 𝐸𝐸𝑀,𝑚𝑎𝑥 =
𝜇𝑇

2
𝑣𝑚𝑎𝑥

2

Image: M. Dolan et al.

𝑚𝑇 =  Target mass
𝜇𝑇  =  DM-nucleon reduced mass
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Migdal effect
NFB, Dent, Newstead, Sabharwal, 

Weiler, arXiv:1905.00046 
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Migdal limits

Migdal limits from 
DarkSide experiment  
arXiv:2207.11967
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Doping the detector with a lighter element

e.g. Hydrodgen-doped liquid Xenon

→Better kinematics for the scattering of light dark matter              
→ Larger recoil energy → signal above threshold

Specific proposal : HydroX = upgrade of LZ, by doping with H2

What if we combine (i) doping with light element and 
         (ii) Migdal effect? 
 → The best sensitivity to light WIMPs
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NFB, Cox, Dolan, Newstead, 
Ritter, arXiv:2305.04690  Migdal effect in H-doped liquid Xenon
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Migdal effect in H-doped liquid Xenon
NFB, Cox, Dolan, Newstead, 

Ritter, arXiv:2305.04690  
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Boosted Dark Matter

Halo dark matter 
 → highly nonrelativistic 𝑣 ∼ 10−3𝑐 

  → low energy recoils in direct detection experiments:   𝐸𝑅,𝑚𝑎𝑥 =
2𝜇𝑇

2

𝑚𝑇
𝑣𝑚𝑎𝑥

2

Could there be a population of higher-energy dark matter?

o Boosted DM produced from decay/annihilation of heavier dark states
o Cosmic-ray upscattered dark matter (“inverse direct detection”)
o DM produced in cosmic ray interactions in the atmosphere (“CR beam dump”) 
o Solar reflected dark matter  
o Supernova dark matter (light dark matter produced in galactic supernova)
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Cosmic ray up-scattered dark mater (CRDM)

Y. Ema et al, arXiv:2011.10939

𝑚𝜒 = 1 MeV 

𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑜𝑟 = 1 GeV

Assume the DM-nucleon scattering 
cross section is non-zero

→ cosmic rays will unavoidably 
scatter with DM, producing a 
(small) high energy DM flux.

→Light boosted DM is visible in    
    direct detection experiments
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Cosmic ray up-scattered dark matter – sub-GeV masses

Bringmann & Pospelov, PRL 2019

Allows light dark to be constrained 
using existing experiments.

Note: 
• these are BIG cross sections 

• DM absorption in the earth 
imposes upper limit on the cross 
sections that can be probed 
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Cosmic ray up-scattered dark mater (CRDM)

Advantages:
• Detectable signals for light DM in direct detection experiments

• Energetic enough to be seen in neutrino experiments 
 →which have higher energy thresholds, but significantly larger target mass

• Removes velocity or momentum suppressions
 → e.g. standard DD expts cannot see pseudoscalar interactions, because 𝜎 ∝ 𝑝4

Disadvantages:
• Observable signals scale with two powers of the scattering cross section

Questions:  How to distinguish heavy non-relativistic DM from light relativistic DM?
• Directional information helps
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CR-upscattered DM:  kinetic energy spectrum

Bell, Newstead and Shaukat Ali, arXiv:2309.11003

1 GeV mediator

1 MeV 
mediator

1GeV mediator

1 MeV 
mediator
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Boosted DM – neutrino vs direct detection exps.

1 GeV mediator 1 MeV mediator

Bell, Newstead and Shaukat Ali, arXiv:2309.11003
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• The Sun

• Neutron Stars 

• White Dwarfs
 

Dark Matter Capture in Stars

→ an alternative approach to Dark Matter Direct Detection experiments
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• Dark matter scatters, loses energy, 
becomes gravitationally bound to star

• Accumulates and annihilates in centre of 
the star → neutrinos escape

In equilibrium: 
Annihilation rate = Capture rate 
     → controlled by DM-nucleon scattering   

   cross section 
     → probes the same quantity as dark  

   matter direct detection experiments 

Dark Matter Capture in Stars
→ an alternative approach to Dark Matter Direct Detection experiments
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IceCube Collaboration, E. Phys. J. C 77 (2017)

Spin-Independent  (SI)                                                     Spin-Dependent (SD) 

Bell, Dolan & Robles, arXiv:2107.04216

Dark matter annihilation in the Sun – Neutrinos
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If captured DM annihilates to a light, long-lived mediator (e.g. a dark photon):
➢ Annihilation products can escape the Sun 
➢ Decay between Sun and Earth → solar gamma rays or cosmic rays  (Batell arXiv:0910.1567)

➢ Decay beyond solar core → less attenuation of neutrino signal   (NFB & Petraki, JCAP 2011)

Leane, Ng & Beacom, 
arXiv:1703.04629

Gamma Rays from the Sun → long lived dark-sector particles
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Annihilation to dark mediators → Solar gamma rays

Solar gamma-ray measurements:  Fermi-LAT and HAWC

HAWC collaboration, Phys Rev. Lett 131 , 051201 (2023)

Dark matter annihilation, e.g.:

𝜒𝜒 → 𝛾𝐷𝛾𝐷 → 𝑒+𝑒−𝑒+𝑒−

Electron final states radiate 
photons. Quark final states 
produce photons via 
hadronization or decay.   
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Bell, Dent 
& Sanderson, 

arXiv:2103.16794

Spin-Dependent (SD)                                                          Spin-Independent (SI) 

HAWC gamma ray measurements provide strong constraints, 
for both spin-dependent and spin-independent scattering

Gamma Rays from the Sun
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Neutron Stars

Capture probability saturates at order unity when 
the cross section satisfies the geometric limit

𝜎𝑡ℎ ∼ 𝜋𝑅2
𝑚𝑛

𝑀∗
∼ 10−45cm2

Due to their extreme density, neutron stars capture dark matter very efficiently.

DM Scattering
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Neutron star heating 
   → from dark matter scattering plus annihilation 

• Capture (plus subsequent energy loss)

  → DM kinetic energy heats neutron star ∼ 1700K 

• Annihilation of thermalised dark matter

  → DM rest mass energy heats neutron star ∼ additional 700K

Coolest known neutron star (PSR J2144-3933) has a temperature of ∼ 4.2 x 104 K

Old isolated neutron stars should cool to below 1000 K after ∼ 10 Myr

Baryakhtar et al 
arXiv:1704.01577
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Completely different kinematic regime to direct detection 
experiments, because DM is relativistic upon infall to the NS:

• No velocity/momentum suppression
    → Sensitivity to interactions that direct detection experiments will never be able to see

• Must take momentum dependence of hadronic couplings into account 

 𝑐𝑛 𝑞 =
𝑐𝑛(0)

1−𝑞2/𝑄0
2 2 with 𝑄0~1 GeV

      → which changes the capture rate by several orders of magnitude 
         Bell, Busoni, Motta, Robles, Thomas, Virgato, PRL 2021

DM capture in Neutron Stars
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Improved capture calculations
Early treatments of the capture process used various simplifying assumptions.

Important physical effects include:

o Consistent treatment of NS structure
• Radial profiles of EoS dependent parameters, and GR corrections by solving the TOV eqns. 

o Gravitational focusing 
• DM trajectories bent toward the NS star

o Fully relativistic (Lorentz invariant) scattering calculation
• Including the fermi momentum of the target particle

o Pauli blocking 
• Suppresses the scattering of low mass dark matter

o Neutron star opacity
• Optical depth

o Multi-scattering effects
• For large DM mass, probability that a collision results in capture is less than 1

o Momentum dependence of hadronic form factors
o Nucleon interactions

NFB, Busoni, Robles & Virgato,
JCAP 09, 028 (2020), JCAP 03, 086 (2021)  

NFB, Busoni, Motta, Robles, Thomas, & Virgato, PRL 2021
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NS Heating Sensitivity (projected limits)

Ball-park sensitivity
  = geometric 
   cross section

  ~𝟏𝟎−𝟒𝟓𝐜𝐦𝟐

Anzuini, Bell, Busoni, Motta, Robles, Thomas & Virgato, arXiv:2108.02525
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Momentum 
transfer in 
single collision 
not sufficient 
for capture

Pauli blocking 
from degenerate 
neutrons

NS Heating Sensitivity (projected limits)

Ball-park sensitivity
  = geometric 
   cross section

  ~𝟏𝟎−𝟒𝟓𝐜𝐦𝟐

Anzuini, Bell, Busoni, Motta, Robles, Thomas & Virgato, arXiv:2108.02525
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NS Heating Sensitivity:  SD nucleon scattering

DM-neutron (SD scattering)                                                    DM-proton (SD scattering) 

Anzuini, Bell, Busoni, Motta, Robles, Thomas and Virgato, arXiv:2108.02525
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Leptons in Neutron Stars

Beta equilibrium in the core determines 
the composition:

• Degenerate neutrons

• Smaller and approximately equal 
electron and proton abundances

• Small muon component
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Electron scattering 

Muon scattering 

Bell, Busoni, Robles & Virgato arXiv:2010.13257 

NS Heating Sensitivity:  lepton scattering
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DM-nucleon scattering DM-electron scattering

Bell, Busoni, Ramirez-Quezada, Robles & Virgato, arXiv:2104.14367

White dwarfs in M4 globular cluster
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Summary

Testing the thermal-relic hypothesis with indirect detection  
o Upcoming observations will make significant progress in closing the WIMP window
o Important to test DM annihilation to neutrinos

Direct Detection
o Directional detection to search below the neutrino floor
o Migdal effect to probe lower mass DM
o Boosted dark matter to probe low mass DM

Dark matter capture in stars
o Relativistic DM.  Probe of low mass dark matter; can look below the neutrino floor
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