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Spin and Polarization
Poincare Invariance

Rotation, Boost and Translations

The space-time transformations involves:

I 4 space-time translations generated by Pµ

I 3 spatial rotations generated by Ji = εijkM
jk/2

I 3 spatial boosts generated by Ki = Mi0

I Commutation relations are

[Jm,Pn] = iεmnkPk , [Ji ,P0] = 0 , [Ki ,Pk ] = iηikP0 ,

[Ki ,P0] = −iPi , [Jm, Jn] = iεmnkJk ,

[Jm,Kn] = iεmnkKk , [Km,Kn] = −iεmnkJk ,

I Casimir operators are : PµP
µ ≡ P2 and WµW

µ ≡W 2 where
Wµ ≡ 1

2εµναβM
ναPβ

I For particle of mass m and spin s we have P2|ψ〉 = m2|ψ〉 and
W 2|ψ〉 = m2 s(s + 1)|ψ〉

‘
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Spin and Polarization
Scalars, Fermions and Gauge Bosons

The Scalar Field

Spin-0 particle of mass m, either scalar of psudo-scalar, is described by
the Kleine-Gordan equation

∂µ∂
µφ−m2φ = 0

I Typical self interactions are φ3, φ4 etc.

I Interaction with fermions: ψ̄ψφ etc.

I Interaction with gauge bosons: Aµ
[
(∂µφ

†)φ− φ†(∂µφ)
]

and
AµAµφ

†φ
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Spin and Polarization
Scalars, Fermions and Gauge Bosons

The Fermion Field

Spin-1/2 particle of mass m is described by the Dirac equation

iγµ∂µψ −mψ = 0

I Describes fermion and its anti-particle in one equation

I Has Lande g -factor value to be 2

I Interaction with scalars: ψ̄ψφ etc.

I Interaction with gauge bosons: ψ̄γµψAµ etc.
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Spin and Polarization
Scalars, Fermions and Gauge Bosons

The Gauge Field

Spin-1 massless photon is described by the Maxwell equation

∂µ(∂µAν − ∂νAµ) = e jν

I Invatiant under local gauge transformations

I Gauge invarinace leads to minimal coupling of Aµ to charged
particles, scalar or fermions, through covariant derivative term

Dµφ ≡ (∂µ + ieAµ)φ

The theory of particle interaction is a locally gauge invariant theory
involving scalars, fermions and gauge bosons.
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Spin and Polarization
The Standard Model

The Standard Model

I Spin 0: H

I Spin 1/2: u, d , c , s, t, b,
e, νe , µ, νµ, τ , ντ

I Spin 1: γ, g , W ,Z
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Spin and Polarization
The Spin Code

Spin quantum number

I Spin is the only internal quantum number of a particle that is
related to the space-time transformation.

I Spin determines the Lorentz structure of the couplings of the
particles with other particles of known spins.

I i.e. the production and decay mechanisms are almost determined by
the spin of the particle.

Helicity amplitude for the decay |s, λ〉 → |s1, l1〉+ |s2, l2〉 is

Msλ
l1 l2 (θ, φ) =

√
2s + 1

4π
Ds∗
λl (φ, θ,−φ)Ms

l1,l2

=

√
2s + 1

4π
e i(λ−l)φd s

λl(θ)Ms
l1,l2 , l = l1 − l2.

d s
λl(θ) is 2s degree polynomial in cos(θ/2) and sin(θ/2)
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Spin and Polarization
The Spin Code

Determination of spin

The spin can be determined by

I exploiting the behaviour of the total cross-section at threshold for
pair production or the threshold behaviour in the off-shell decay of
the particle.

I distribution in the production angle relying on a known production
mechanism.

I extracting the (cos θ)2s polar angle dependence or cos 2sφ azimuthal
angle dependence of the decay distributions
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The Collider Experiment
Scattering and Cross-sections

Polarized particle production

Consider the process e+e− → tt̄:

It is mediated by
a photon e+e− → γ∗ → tt̄ (parity conserving) and
a Z boson e+e− → Z∗ → tt̄ (parity violating).

M(λe− , λe+ , λt , λt̄) = Mγ(λe− , λe+ , λt , λt̄) + MZ (λe− , λe+ , λt , λt̄)

η3 =
|M(λe− , λe+ ,+, λt̄)|2 − |M(λe− , λe+ ,−, λt̄)|2

|M(λe− , λe+ , λt , λt̄)|2

η1 =
< (M(λe− , λe+ ,+, λt̄)M

∗(λe− , λe+ ,−, λt̄))

|M(λe− , λe+ , λt , λt̄)|2

η2 =
−= (M(λe− , λe+ ,+, λt̄)M

∗(λe− , λe+ ,−, λt̄))

|M(λe− , λe+ , λt , λt̄)|2
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The Collider Experiment
Scattering and Cross-sections

Polarized beam collision

Polarization density matrix for fermion:

ρ(λ, λ′) =
1

2
~η · ~σ =

1

2

[
1 + η3 η1 − iη2

η1 + iη2 1− η3

]
.

With initial state e+ and e− polarized the matrix element is given by

|M|2 =
∑

λe− ,λ
′
e−
,λe+ ,λ′

e+ ,λt ,λt̄

ρe−(λe− , λ
′
e−) ρe+ (λe+ , λ′e+ )

×M(λe− , λe+ , λt , λt̄) M∗(λ′e− , λ
′
e+ , λt , λt̄)
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The Collider Experiment
The density matrix

The process

We look at the production process B1B2 → A A1 ... An−1 followed by the
decay of A as A→ BC . The differential cross-section is given by

dσ =
∑
λ,λ′

[
(2π)4

2I
ρ(λ, λ′)δ4

(
kB1 + kB2 − pA −

( n−1∑
i

pi

))

× d3pA
2EA(2π)3

n−1∏
i

d3pi
2Ei (2π)3

]

×
[

1

ΓA

(2π)4

2mA
Γ′(λ, λ′)δ4(pA − pB − pC )

d3pB
2EB(2π)3

d3pC
2EC (2π)3

]

First bracket = σ(λ, λ′) = σA PA(λ, λ′)

Second bracket =
BBC (2s + 1)

4π
ΓA(λ, λ′)dΩB
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The Collider Experiment
The density matrix

The angular distribution

1

σ

dσ

dΩB
=

2s + 1

4π

∑
λ,λ′

PA(λ, λ′) ΓA(λ, λ′),

I σ = BBC σA is the cross-section of production of A and its decay
into BC .

I BBC is the branching ration of A into BC .

I PA(λ, λ′) = σ(λ, λ′)/σA is the polarization density matrix.

I ΓA(λ, λ′) is the normalized decay density matrix in the rest frame of
A.
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The Collider Experiment
The density matrix

The decay density matrix

The decay density matrix for the decay proess A→ BC is given by

Γ′s(λ, λ′) =
∑
l1,l2

Msλ
l1l2M

∗sλ′
l1l2

=

(
2s + 1

4π

)
e i(λ−λ

′)φ
∑
l1,l2

d s
λl(θ)d s

λ′l(θ) |Ms
l1,l2 |

2

= e i(λ−λ
′)φ
∑
l

d s
λl(θ)d s

λ′l(θ)

[∑
l1

(
2s + 1

4π

)
|Ms

l1,l1−l |
2

]
= e i(λ−λ

′)φ
∑
l

d s
λl(θ)d s

λ′l(θ) asl

|l1| ≤ s1, |l1 − l | ≤ s2, |l | ≤ s and Tr(Γ′s(λ, λ′)) =
∑

l a
s
l .
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The Collider Experiment
The density matrix

The final distribution

The normalized decay density matrix is given by

ΓA(λ, λ′) = e i(λ−λ
′)φ

∑
l d

s
λl(θ)d s

λ′l(θ)asl∑
l a

s
l

= e i(λ−λ
′)φ γA(λ, λ′; θ),

and the final distribution is given by

1

σ

dσ

dΩB
=

2s + 1

4π

[ ∑
λ

PA(λ, λ) γA(λ, λ)

+
∑
λ 6=λ′

<[PA(λ, λ′)] γA(λ, λ′) cos((λ− λ′)φ)

−
∑
λ6=λ′

=[PA(λ, λ′)] γA(λ, λ′) sin((λ− λ′)φ)

 .
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The Collider Experiment
Spin-1/2 case
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The Collider Experiment
Spin-1/2 case

The density matrix: s = 1/2

For | 12 , l〉 → |s1, l1〉+ |s2, l2〉

Γ 1
2
(λ, λ′) =

 1+α cos θ
2

α sin θ
2 e iφ

α sin θ
2 e−iφ 1−α cos θ

2

 ,
Here α = (a

1/2
1/2 − a

1/2
−1/2)/(a

1/2
1/2 + a

1/2
−1/2) and

a
1/2
1/2 =

(
1

2π

)∑
l1

|M1/2
l1,l1−1/2|

2 |l1| ≤ s1, |l1 − 1/2| ≤ s2

a
1/2
−1/2 =

(
1

2π

)∑
l1

|M1/2
l1,l1+1/2|

2 |l1| ≤ s1, |l1 + 1/2| ≤ s2.
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The Collider Experiment
Spin-1/2 case

Angular distribution: s = 1/2

Polarization density matrix:

P 1
2
(λ, λ′) =

1

2

 1 + η3 η1 − iη2

η1 + iη2 1− η3

 ,
Thus the angular distribution becomes:

1

σ1

dσ1

dΩB
=

1

4π
[1 + αη3 cos θ + αη1 sin θ cosφ+ αη2 sin θ sinφ] .

The cos θ averaged azimuthal distribution is given by

1

σ1

dσ1

dφ
=

1

2π

[
1 +

αη1π

4
cosφ+

αη2π

4
sinφ

]
.
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The Collider Experiment
Spin-1/2 case

Angular distribution: e+e− → tt̄
√
s = 400GeV, η1 = −0.75, η2 ≈ 0, η3 = −0.19
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Angular distribution: e+e− → tt̄
√
s = 400GeV, η1 = −0.75, η2 ≈ 0, η3 = −0.19

PH_b
Entries  1000000
Mean   0.4225
RMS    0.2838

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

5000

10000

15000

20000

25000

30000

35000

PH_b
Entries  1000000
Mean   0.4225
RMS    0.2838

Phi_b

PH_l
Entries  1000000
Mean   0.4467
RMS    0.2861

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

5000

10000

15000

20000

25000

30000

35000
PH_l

Entries  1000000
Mean   0.4467
RMS    0.2861

Phi_l

Ritesh Singh Spin@Colliders 27 / 41



The Collider Experiment
Spin-1 case

Spin-1 case

Ritesh Singh Spin@Colliders 28 / 41



The Collider Experiment
Spin-1 case

The density matrix: s = 1

For |1, l〉 → |s1, l1〉+ |s2, l2〉,

Γ1(l, l′) =


1+δ+(1−3δ) cos2 θ+2α cos θ

4
sin θ(α+(1−3δ) cos θ)

2
√

2
eiφ (1 − 3δ)

(1−cos2 θ)
4

ei2φ

sin θ(α+(1−3δ) cos θ)

2
√

2
e−iφ δ + (1 − 3δ) sin2 θ

2
sin θ(α−(1−3δ) cos θ)

2
√

2
eiφ

(1 − 3δ)
(1−cos2 θ)

4
e−i2φ sin θ(α−(1−3δ) cos θ)

2
√

2
e−iφ 1+δ+(1−3δ) cos2 θ−2α cos θ

4

 ,

where,

α =
a1

1 − a1
−1

a1
1

+ a1
0

+ a1
−1

, δ =
a1

0

a1
1

+ a1
0

+ a1
−1

and

a1
1 =

( 3

4π

)∑
l1

|M1
l1,l1−1|

2 |l1| ≤ s1, |l1 − 1| ≤ s2

a1
0 =

( 3

4π

)∑
l1

|M1
l1,l1
|2 |l1| ≤ min(s1, s2)

a1
−1 =

( 3

4π

)∑
l1

|M1
l1,l1+1|

2 |l1| ≤ s1, |l1 + 1| ≤ s2
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The Collider Experiment
Spin-1 case

Angular distribution: s = 1

Polarization density matrix:

P1(λ, λ′) =


1
3

+ pz
2

+ Tzz√
6

px−ipy

2
√

2
+

Txz−iTyz√
3

Txx−Tyy−2iTxy√
6

px+ipy

2
√

2
+

Txz+iTyz√
3

1
3
− 2Tzz√

6

px−ipy

2
√

2
− Txz−iTyz√

3

Txx−Tyy +2iTxy√
6

px+ipy

2
√

2
− Txz+iTyz√

3

1
3
− pz

2
+ Tzz√

6

 ,
The angular distribution is:

1

σ

dσ

dΩ
=

3

8π

[(
2

3
− (1− 3δ)

Tzz√
6

)
+ α pz cos θ +

√
3

2
(1− 3δ) Tzz cos2 θ

+

(
α px + 2

√
2

3
(1− 3δ) Txz cos θ

)
sin θ cosφ

+

(
α py + 2

√
2

3
(1− 3δ) Tyz cos θ

)
sin θ sinφ

+ (1− 3δ)

(
Txx − Tyy√

6

)
sin2 θ cos(2φ) +

√
2

3
(1− 3δ) Txy sin2 θ sin(2φ)

]
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The Collider Experiment
Spin-1 case

Polarization asymmetries: e+e− → ZZ

Define I (θ, φ) = (1/σ)(dσ/dΩ), then we have

Ax =

[ ∫ π

θ=0

∫ π
2

φ=−π2
I (θ, φ) sin(θ)dθdφ−

∫ π

θ=0

∫ 3π2

φ=π
2

I (θ, φ) sin(θ)dθdφ

]
=

3αpx
4

=
σ(cx > 0)− σ(cx < 0)

σ(cx > 0) + σ(cx < 0)

Here cx = sin θ cosφ in the rest frame of the decaying particle.

Similarly one can define asymmetries for other polarization parameters as
well.
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The Collider Experiment
Spin-1 case

Correlations Asymmetries
cx = sin θ cosφ Ax = 3αpx

4

cy = sin θ sinφ Ay =
3αpy

4

cz = cos θ Az = 3αpz
4

cxy = cxcy Axy = 2
π

√
2
3 (1− 3δ)Txy

cxz = cxcz Axz = 2
π

√
2
3 (1− 3δ)Txz

cyz = cycz Ayz = 2
π

√
2
3 (1− 3δ)Tyz

cx2−y2 = c2
x − c2

y Ayz = 1
π

√
2
3 (1− 3δ)(Txx − Tyy )

cyz = sin 3θ Azz = 3
8

√
3
2 (1− 3δ)Tzz
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The Collider Experiment
Spin-1 case

Polarization asymmetries: e+e− → ZZ
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The Collider Experiment
Spin-1 case

Polarization asymmetries: e+e− → Zγ
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The Collider Experiment
Spin-1 case

Some of the Collider Studies

I Anomalous couplings in e+e− → ZZ/Zγ [R. Rahaman, RKS EPJC76 (2016)]

including beam polarization [R. Rahaman, RKS EPJC77 (2017)]

I Anomalous couplings in e+e− →W+W− including beam
polarizations [R. Rahaman, RKS PRD101 (2020)]

I Anomalous couplings in pp → ZZ (leptonic channels) at LHC [R.

Rahaman, RKS NPB948 (2019)]

I Anomalous coulings in pp → ZW± at LHC [R. Rahaman, RKS JHEP04(2020)075]

I J. A. Aguilar-Saavedra et. al. PRD93 (2016), EPJC77 (2017) etc.

With two spin-full particles in the final state we can do more.
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Spin-Spin Correlations

Spin-Spin Correlations
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Spin-Spin Correlations

Polarization and Correlations

For single particle spin-polarization we have:

1

σ

dσ

dΩ
∝ I + ~P.~S + TijSiSj + ...

For two particle spin-polarization we have:

1

σ

d2σ

dΩadΩb
∝ I⊗ I + ~PA.~S ⊗ I + TA

ij SiSj ⊗ I

+ I⊗ ~PB .~S + I⊗ TB
ij SiSj

+ ~PA.~S ⊗ ~PB .~S + TA
ij SiSj ⊗ TB

ij SiSj

+ ~PA.~S ⊗ TB
ij SiSj + TA

ij SiSj ⊗ ~PB .~S

[R. Rahaman, RKS NPB984 (2022)]
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Spin-Spin Correlations

Asymmetries
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I 80 asymmetries +
cross-section

I Asymmetries: 44 CP-even,
36 -odd

I 45 asymmetries require
flavor tagging, 35 dont.
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Spin-Spin Correlations

Spin-correlations @ Collider Studies

I e+e− →W+W−, anomalous couplings, light flavor tagging using
ANN and BDT [A. Subba, RKS, 2212.12973]

I e+e− →W+W−, anomalous couplings, light flavor tagging using
ANN and BDT, using beam polarizations [A. Subba, RKS, 2305.15106]

4 2 0 2 4
cWWW
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4

c B
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-0.8,+0.3

+0.8,-0.3 ±0.8, 0.3
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100 fb 1
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100 fb 1

95% C.L.
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Spin-Spin Correlations

Beyond two-particle correlations

I J. A. Aguilar Saavedra et.al.: Quantum entanglement and Bells
inequalities in top pair [EPJC82 (2022)], in H → ZZ [PRD107 (2023)], in
H →WW [2209.14033]

I 2302.00683, Fabbrichesi et.al (See references for the detailed list).

I pp → t̄tZ , two-body and three-body spin correlations,
t̄tZ -anomalous couplings [R. Rahaman, JHEP03(2023)077]

I Three-body entanglement in particle physics [Sakurai, Spannowsky, 2310.01477]
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Conclusions

I Polarization and spin-correlation asymmetries are very useful in
probing anomalous couplings and BSM in general.

I Study of Bell inequalities and quantum entanglements at collider is a
hot topic in past two years.
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