

Role of polarization and spin-spin correlations at $\ensuremath{\mathsf{ILC}/\mathsf{LHC}}$

Ritesh K. Singh

Department of Physical Sciences Indian Institute of Science Education & Research Kolkata

ICHEPAP 2023, SINP Kolkata

December 15, 2023

Spin and Polarization

Poincare Invariance Scalars, Fermions and Gauge Bosons The Standard Model The Spin Code

The Collider Experiment

Scattering and Cross-sections The density matrix Spin-1/2 case Spin-1 case

Spin-Spin Correlations

э

イロト イポト イヨト イヨト

Spin and Polarization

Spin and Polarization

Poincare Invariance

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ● ●

Spin and Polarization Poincare Invariance

Rotation, Boost and Translations

The space-time transformations involves:

4

The space-time transformations involves:

▶ 4 space-time translations generated by P^{μ}

4

3

イロト イポト イヨト イヨト

The space-time transformations involves:

- ▶ 4 space-time translations generated by P^{μ}
- ▶ 3 spatial rotations generated by $J_i = \epsilon_{ijk} M^{jk}/2$

4

The space-time transformations involves:

- ▶ 4 space-time translations generated by P^{μ}
- ▶ 3 spatial rotations generated by $J_i = \epsilon_{ijk} M^{jk}/2$
- ▶ 3 spatial boosts generated by $K_i = M_{i0}$

4

The space-time transformations involves:

- ▶ 4 space-time translations generated by P^{μ}
- ► 3 spatial rotations generated by $J_i = \epsilon_{ijk} M^{jk}/2$
- ▶ 3 spatial boosts generated by $K_i = M_{i0}$
- Commutation relations are

$$\begin{split} [J_m, P_n] &= i\epsilon_{mnk}P_k , \quad [J_i, P_0] = 0 , \quad [K_i, P_k] = i\eta_{ik}P_0 , \\ [K_i, P_0] &= -iP_i , \quad [J_m, J_n] = i\epsilon_{mnk}J_k , \\ [J_m, K_n] &= i\epsilon_{mnk}K_k , \quad [K_m, K_n] = -i\epsilon_{mnk}J_k , \end{split}$$

4

The space-time transformations involves:

- ▶ 4 space-time translations generated by P^{μ}
- ► 3 spatial rotations generated by $J_i = \epsilon_{ijk} M^{jk}/2$
- ▶ 3 spatial boosts generated by $K_i = M_{i0}$
- Commutation relations are

$$[J_m, P_n] = i\epsilon_{mnk}P_k , \quad [J_i, P_0] = 0 , \quad [K_i, P_k] = i\eta_{ik}P_0 ,$$
$$[K_i, P_0] = -iP_i , \quad [J_m, J_n] = i\epsilon_{mnk}J_k ,$$
$$[J_m, K_n] = i\epsilon_{mnk}K_k , \quad [K_m, K_n] = -i\epsilon_{mnk}J_k ,$$

• Casimir operators are : $P_{\mu}P^{\mu} \equiv P^2$ and $W_{\mu}W^{\mu} \equiv W^2$ where $W_{\mu} \equiv \frac{1}{2} \epsilon_{\mu\nu\alpha\beta} M^{\nu\alpha} P^{\beta}$

・ロット (四) (日) (日) (日)

The space-time transformations involves:

- ▶ 4 space-time translations generated by P^{μ}
- ► 3 spatial rotations generated by $J_i = \epsilon_{ijk} M^{jk}/2$
- ▶ 3 spatial boosts generated by $K_i = M_{i0}$
- Commutation relations are

$$\begin{split} [J_m, P_n] &= i\epsilon_{mnk}P_k , \quad [J_i, P_0] = 0 , \quad [K_i, P_k] = i\eta_{ik}P_0 , \\ [K_i, P_0] &= -iP_i , \quad [J_m, J_n] = i\epsilon_{mnk}J_k , \\ [J_m, K_n] &= i\epsilon_{mnk}K_k , \quad [K_m, K_n] = -i\epsilon_{mnk}J_k , \end{split}$$

• Casimir operators are : $P_{\mu}P^{\mu} \equiv P^2$ and $W_{\mu}W^{\mu} \equiv W^2$ where $W_{\mu} \equiv \frac{1}{2} \epsilon_{\mu\nu\alpha\beta} M^{\nu\alpha} P^{\beta}$

• For particle of mass m and spin s we have $P^2|\psi\rangle = m^2|\psi\rangle$ and $W^2|\psi\rangle = m^2 s(s+1)|\psi\rangle$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ● ●

Scalars, Fermions and Gauge Bosons

・ロト ・ 雪 ト ・ ヨ ト

The Scalar Field

Spin-0 particle of mass m, either scalar of psudo-scalar, is described by the Kleine-Gordan equation

$$\partial_{\mu}\partial^{\mu}\phi - m^{2}\phi = 0$$

イロト イポト イヨト イヨト 三日

The Scalar Field

Spin-0 particle of mass m, either scalar of psudo-scalar, is described by the Kleine-Gordan equation

$$\partial_{\mu}\partial^{\mu}\phi - m^{2}\phi = 0$$

• Typical self interactions are ϕ^3 , ϕ^4 etc.

The Scalar Field

Spin-0 particle of mass m, either scalar of psudo-scalar, is described by the Kleine-Gordan equation

$$\partial_{\mu}\partial^{\mu}\phi - m^{2}\phi = 0$$

- Typical self interactions are ϕ^3 , ϕ^4 etc.
- Interaction with fermions: $\bar{\psi}\psi\phi$ etc.

The Scalar Field

Spin-0 particle of mass m, either scalar of psudo-scalar, is described by the Kleine-Gordan equation

$$\partial_{\mu}\partial^{\mu}\phi - m^{2}\phi = 0$$

- Typical self interactions are ϕ^3 , ϕ^4 etc.
- Interaction with fermions: $\bar{\psi}\psi\phi$ etc.
- Interaction with gauge bosons: $A^{\mu} \left[(\partial_{\mu} \phi^{\dagger}) \phi \phi^{\dagger} (\partial_{\mu} \phi) \right]$ and $A^{\mu} A_{\mu} \phi^{\dagger} \phi$

The Fermion Field

$$i\gamma^{\mu}\partial_{\mu}\psi - m\psi = 0$$

The Fermion Field

Spin-1/2 particle of mass *m* is described by the Dirac equation

$$i\gamma^{\mu}\partial_{\mu}\psi - m\psi = 0$$

Describes fermion and its anti-particle in one equation

The Fermion Field

$$i\gamma^{\mu}\partial_{\mu}\psi - m\psi = 0$$

- Describes fermion and its anti-particle in one equation
- Has Lande g-factor value to be 2

・ロット (日本) (日本) (日本)

The Fermion Field

$$i\gamma^{\mu}\partial_{\mu}\psi - m\psi = 0$$

- Describes fermion and its anti-particle in one equation
- ► Has Lande *g*-factor value to be 2
- Interaction with scalars: $\bar{\psi}\psi\phi$ etc.

The Fermion Field

$$i\gamma^{\mu}\partial_{\mu}\psi - m\psi = 0$$

- Describes fermion and its anti-particle in one equation
- Has Lande g-factor value to be 2
- Interaction with scalars: $\bar{\psi}\psi\phi$ etc.
- Interaction with gauge bosons: $\bar{\psi}\gamma^{\mu}\psi A_{\mu}$ etc.

The Gauge Field

Spin-1 massless photon is described by the Maxwell equation

 $\partial_{\mu}(\partial^{\mu}A^{\nu}-\partial^{\nu}A^{\mu})=e\;j^{
u}$

The Gauge Field

Spin-1 massless photon is described by the Maxwell equation

$$\partial_\mu (\partial^\mu A^
u - \partial^
u A^\mu) = e \; j^
u$$

Invatiant under local gauge transformations

The theory of particle interaction is a locally gauge invariant theory involving scalars, fermions and gauge bosons.

The Gauge Field

Spin-1 massless photon is described by the Maxwell equation

$$\partial_{\mu}(\partial^{\mu}A^{
u}-\partial^{
u}A^{\mu})=e\;j^{
u}$$

- Invatiant under local gauge transformations
- Gauge invarinace leads to minimal coupling of A^μ to charged particles, scalar or fermions, through covariant derivative term

$$D^{\mu}\phi \equiv (\partial^{\mu} + ieA^{\mu})\phi$$

The theory of particle interaction is a locally gauge invariant theory involving scalars, fermions and gauge bosons.

The Standard Model

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ● ●

The Standard Model

The Spin Code

Spin and Polarization The Spin Code

Spin quantum number

Spin is the only internal quantum number of a particle that is related to the space-time transformation.

э

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

- Spin is the only internal quantum number of a particle that is related to the space-time transformation.
- Spin determines the Lorentz structure of the couplings of the particles with other particles of known spins.

э

- Spin is the only internal quantum number of a particle that is related to the space-time transformation.
- Spin determines the Lorentz structure of the couplings of the particles with other particles of known spins.
- i.e. the production and decay mechanisms are almost determined by the spin of the particle.

- Spin is the only internal quantum number of a particle that is related to the space-time transformation.
- Spin determines the Lorentz structure of the couplings of the particles with other particles of known spins.
- i.e. the production and decay mechanisms are almost determined by the spin of the particle.

Helicity amplitude for the decay $|s,\lambda
angle o |s_1,l_1
angle + |s_2,l_2
angle$ is

$$\begin{split} \mathcal{M}_{l_1 l_2}^{s\lambda}(\theta,\phi) &= \sqrt{\frac{2s+1}{4\pi}} \mathcal{D}_{\lambda l}^{s*}(\phi,\theta,-\phi) \mathcal{M}_{l_1,l_2}^s \\ &= \sqrt{\frac{2s+1}{4\pi}} e^{i(\lambda-l)\phi} d_{\lambda l}^s(\theta) \mathcal{M}_{l_1,l_2}^s, \quad l=l_1-l_2. \end{split}$$

 $d^s_{\lambda l}(heta)$ is 2s degree polynomial in $\cos(heta/2)$ and $\sin(heta/2)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Spin and Polarization The Spin Code

Determination of spin

The spin can be determined by

Determination of spin

The spin can be determined by

exploiting the behaviour of the total cross-section at threshold for pair production or the threshold behaviour in the off-shell decay of the particle.

э

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Determination of spin

The spin can be determined by

- exploiting the behaviour of the total cross-section at threshold for pair production or the threshold behaviour in the off-shell decay of the particle.
- distribution in the production angle relying on a known production mechanism.

э

イロト イポト イヨト イヨト

Determination of spin

The spin can be determined by

- exploiting the behaviour of the total cross-section at threshold for pair production or the threshold behaviour in the off-shell decay of the particle.
- distribution in the production angle relying on a known production mechanism.
- extracting the $(\cos \theta)^{2s}$ polar angle dependence or $\cos 2s\phi$ azimuthal angle dependence of the decay distributions

The Collider Experiment

The Collider Experiment

Scattering and Cross-sections

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ● ●

The Collider Experiment Scattering and Cross-sections

Polarized particle production

Consider the process $e^+e^-
ightarrow tar{t}$:

イロト 不得 トイヨト イヨト 三日

Consider the process $e^+e^- \rightarrow t\bar{t}$: It is mediated by a photon $e^+e^- \rightarrow \gamma^* \rightarrow t\bar{t}$ (parity conserving)

э

Consider the process $e^+e^- \rightarrow t\bar{t}$: It is mediated by a photon $e^+e^- \rightarrow \gamma^* \rightarrow t\bar{t}$ (parity conserving) and a Z boson $e^+e^- \rightarrow Z^* \rightarrow t\bar{t}$ (parity violating).

э

イロト 不得 トイヨト イヨト

Consider the process $e^+e^- \rightarrow t\bar{t}$: It is mediated by a photon $e^+e^- \rightarrow \gamma^* \rightarrow t\bar{t}$ (parity conserving) and a Z boson $e^+e^- \rightarrow Z^* \rightarrow t\bar{t}$ (parity violating).

$$M(\lambda_{e^{-}}, \lambda_{e^{+}}, \lambda_{t}, \lambda_{\bar{t}}) = M_{\gamma}(\lambda_{e^{-}}, \lambda_{e^{+}}, \lambda_{t}, \lambda_{\bar{t}}) + M_{Z}(\lambda_{e^{-}}, \lambda_{e^{+}}, \lambda_{t}, \lambda_{\bar{t}})$$

э

イロト 不得 トイヨト イヨト

Consider the process $e^+e^- \rightarrow t\bar{t}$: It is mediated by a photon $e^+e^- \rightarrow \gamma^* \rightarrow t\bar{t}$ (parity conserving) and a Z boson $e^+e^- \rightarrow Z^* \rightarrow t\bar{t}$ (parity violating).

$$M(\lambda_{e^-}, \lambda_{e^+}, \lambda_t, \lambda_{\bar{t}}) = M_{\gamma}(\lambda_{e^-}, \lambda_{e^+}, \lambda_t, \lambda_{\bar{t}}) + M_Z(\lambda_{e^-}, \lambda_{e^+}, \lambda_t, \lambda_{\bar{t}})$$

$$\eta_3 = \frac{|M(\lambda_{e^-}, \lambda_{e^+}, +, \lambda_{\bar{t}})|^2 - |M(\lambda_{e^-}, \lambda_{e^+}, -, \lambda_{\bar{t}})|^2}{|M(\lambda_{e^-}, \lambda_{e^+}, \lambda_t, \lambda_{\bar{t}})|^2}$$

э

Consider the process $e^+e^- \rightarrow t\bar{t}$: It is mediated by a photon $e^+e^- \rightarrow \gamma^* \rightarrow t\bar{t}$ (parity conserving) and a Z boson $e^+e^- \rightarrow Z^* \rightarrow t\bar{t}$ (parity violating).

$$\mathcal{M}(\lambda_{e^{-}},\lambda_{e^{+}},\lambda_{t},\lambda_{\bar{t}}) = \mathcal{M}_{\gamma}(\lambda_{e^{-}},\lambda_{e^{+}},\lambda_{t},\lambda_{\bar{t}}) + \mathcal{M}_{Z}(\lambda_{e^{-}},\lambda_{e^{+}},\lambda_{t},\lambda_{\bar{t}})$$

$$\eta_{3} = \frac{|M(\lambda_{e^{-}}, \lambda_{e^{+}}, +, \lambda_{\bar{t}})|^{2} - |M(\lambda_{e^{-}}, \lambda_{e^{+}}, -, \lambda_{\bar{t}})|^{2}}{|M(\lambda_{e^{-}}, \lambda_{e^{+}}, \lambda_{t}, \lambda_{\bar{t}})|^{2}}$$

$$\eta_{1} = \frac{\Re \left(M(\lambda_{e^{-}}, \lambda_{e^{+}}, +, \lambda_{\bar{t}}) M^{*}(\lambda_{e^{-}}, \lambda_{e^{+}}, -, \lambda_{\bar{t}}) \right)}{|M(\lambda_{e^{-}}, \lambda_{e^{+}}, \lambda_{t}, \lambda_{\bar{t}})|^{2}}$$

э

イロト 不得 トイヨト イヨト

Consider the process $e^+e^- \rightarrow t\bar{t}$: It is mediated by a photon $e^+e^- \rightarrow \gamma^* \rightarrow t\bar{t}$ (parity conserving) and a Z boson $e^+e^- \rightarrow Z^* \rightarrow t\bar{t}$ (parity violating).

$$M(\lambda_{e^{-}},\lambda_{e^{+}},\lambda_{t},\lambda_{\bar{t}}) = M_{\gamma}(\lambda_{e^{-}},\lambda_{e^{+}},\lambda_{t},\lambda_{\bar{t}}) + M_{Z}(\lambda_{e^{-}},\lambda_{e^{+}},\lambda_{t},\lambda_{\bar{t}})$$

$$\eta_{3} = \frac{|M(\lambda_{e^{-}}, \lambda_{e^{+}}, +, \lambda_{\bar{t}})|^{2} - |M(\lambda_{e^{-}}, \lambda_{e^{+}}, -, \lambda_{\bar{t}})|^{2}}{|M(\lambda_{e^{-}}, \lambda_{e^{+}}, \lambda_{t}, \lambda_{\bar{t}})|^{2}}$$

$$\eta_{1} = \frac{\Re \left(M(\lambda_{e^{-}}, \lambda_{e^{+}}, +, \lambda_{\bar{t}}) M^{*}(\lambda_{e^{-}}, \lambda_{e^{+}}, -, \lambda_{\bar{t}}) \right)}{|M(\lambda_{e^{-}}, \lambda_{e^{+}}, \lambda_{t}, \lambda_{\bar{t}})|^{2}}$$

$$\eta_{2} = \frac{-\Im \left(M(\lambda_{e^{-}}, \lambda_{e^{+}}, +, \lambda_{\bar{t}}) M^{*}(\lambda_{e^{-}}, \lambda_{e^{+}}, -, \lambda_{\bar{t}}) \right)}{|M(\lambda_{e^{-}}, \lambda_{e^{+}}, \lambda_{t}, \lambda_{\bar{t}})|^{2}}$$

٠

Polarized beam collision

Polarization density matrix for fermion:

$$\rho(\lambda,\lambda') = \frac{1}{2}\vec{\eta}\cdot\vec{\sigma} = \frac{1}{2} \begin{bmatrix} 1+\eta_3 & \eta_1-i\eta_2\\ \eta_1+i\eta_2 & 1-\eta_3 \end{bmatrix}$$

Polarized beam collision

Polarization density matrix for fermion:

$$\rho(\lambda,\lambda') = \frac{1}{2}\vec{\eta}\cdot\vec{\sigma} = \frac{1}{2} \begin{bmatrix} 1+\eta_3 & \eta_1-i\eta_2\\ \eta_1+i\eta_2 & 1-\eta_3 \end{bmatrix}.$$

With initial state e^+ and e^- polarized the matrix element is given by

$$|M|^{2} = \sum_{\lambda_{e^{-}},\lambda'_{e^{-}},\lambda_{e^{+}},\lambda'_{e^{+}},\lambda_{t},\lambda_{\bar{t}}} \rho_{e^{-}}(\lambda_{e^{-}},\lambda'_{e^{-}}) \rho_{e^{+}}(\lambda_{e^{+}},\lambda'_{e^{+}}) \times M(\lambda_{e^{-}},\lambda_{e^{+}},\lambda_{t},\lambda_{\bar{t}}) M^{*}(\lambda'_{e^{-}},\lambda'_{e^{+}},\lambda_{t},\lambda_{\bar{t}})$$

The density matrix

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ● ●

The process

We look at the production process $B_1B_2 \rightarrow A A_1 \dots A_{n-1}$ followed by the decay of A as $A \rightarrow BC$. The differential cross-section is given by

The process

We look at the production process $B_1B_2 \rightarrow A A_1 \dots A_{n-1}$ followed by the decay of A as $A \rightarrow BC$. The differential cross-section is given by

$$d\sigma = \sum_{\lambda,\lambda'} \left[\frac{(2\pi)^4}{2I} \rho(\lambda,\lambda') \delta^4 \left(k_{B_1} + k_{B_2} - p_A - \left(\sum_{i}^{n-1} p_i \right) \right) \right. \\ \left. \times \frac{d^3 p_A}{2E_A(2\pi)^3} \prod_{i}^{n-1} \frac{d^3 p_i}{2E_i(2\pi)^3} \right] \\ \times \left[\frac{1}{\Gamma_A} \frac{(2\pi)^4}{2m_A} \Gamma'(\lambda,\lambda') \delta^4 (p_A - p_B - p_C) \frac{d^3 p_B}{2E_B(2\pi)^3} \frac{d^3 p_C}{2E_C(2\pi)^3} \right]$$

The process

We look at the production process $B_1B_2 \rightarrow A A_1 \dots A_{n-1}$ followed by the decay of A as $A \rightarrow BC$. The differential cross-section is given by

$$d\sigma = \sum_{\lambda,\lambda'} \left[\frac{(2\pi)^4}{2I} \rho(\lambda,\lambda') \delta^4 \left(k_{B_1} + k_{B_2} - p_A - \left(\sum_{i}^{n-1} p_i \right) \right) \right. \\ \left. \times \frac{d^3 p_A}{2E_A(2\pi)^3} \prod_{i}^{n-1} \frac{d^3 p_i}{2E_i(2\pi)^3} \right] \\ \left. \times \left[\frac{1}{\Gamma_A} \frac{(2\pi)^4}{2m_A} \Gamma'(\lambda,\lambda') \delta^4 (p_A - p_B - p_C) \frac{d^3 p_B}{2E_B(2\pi)^3} \frac{d^3 p_C}{2E_C(2\pi)^3} \right] \right]$$

First bracket =
$$\sigma(\lambda, \lambda') = \sigma_A P_A(\lambda, \lambda')$$

Second bracket = $\frac{B_{BC}(2s+1)}{4\pi} \Gamma_A(\lambda, \lambda') d\Omega_B$

The angular distribution

$$rac{1}{\sigma} \; rac{d\sigma}{d\Omega_B} = rac{2s+1}{4\pi} \sum_{\lambda,\lambda'} \; P_A(\lambda,\lambda') \; \; \Gamma_A(\lambda,\lambda'),$$

э

$$\frac{1}{\sigma} \frac{d\sigma}{d\Omega_B} = \frac{2s+1}{4\pi} \sum_{\lambda,\lambda'} P_A(\lambda,\lambda') \Gamma_A(\lambda,\lambda'),$$

• $\sigma = B_{BC} \sigma_A$ is the cross-section of production of A and its decay into *BC*.

$$\frac{1}{\sigma} \frac{d\sigma}{d\Omega_B} = \frac{2s+1}{4\pi} \sum_{\lambda,\lambda'} P_A(\lambda,\lambda') \Gamma_A(\lambda,\lambda'),$$

- $\sigma = B_{BC} \sigma_A$ is the cross-section of production of A and its decay into *BC*.
- B_{BC} is the branching ration of A into BC.

$$\frac{1}{\sigma} \frac{d\sigma}{d\Omega_B} = \frac{2s+1}{4\pi} \sum_{\lambda,\lambda'} P_A(\lambda,\lambda') \Gamma_A(\lambda,\lambda'),$$

- $\sigma = B_{BC} \sigma_A$ is the cross-section of production of A and its decay into *BC*.
- B_{BC} is the branching ration of A into BC.
- $P_A(\lambda, \lambda') = \sigma(\lambda, \lambda') / \sigma_A$ is the polarization density matrix.

メロト (雪) (ヨ) (ヨ) (ヨ) ()

$$rac{1}{\sigma} \; rac{d\sigma}{d\Omega_B} = rac{2s+1}{4\pi} \sum_{\lambda,\lambda'} \; P_{A}(\lambda,\lambda') \; \; \Gamma_{A}(\lambda,\lambda'),$$

- $\sigma = B_{BC} \sigma_A$ is the cross-section of production of A and its decay into *BC*.
- B_{BC} is the branching ration of A into BC.
- $P_A(\lambda, \lambda') = \sigma(\lambda, \lambda') / \sigma_A$ is the polarization density matrix.
- Γ_A(λ, λ') is the normalized decay density matrix in the rest frame of A.

・ロット (日本) (日本) (日本)

The decay density matrix for the decay proess $A \rightarrow BC$ is given by

э

The decay density matrix for the decay proess $A \rightarrow BC$ is given by

$$\Gamma^{\prime s}(\lambda,\lambda^{\prime}) = \sum_{l_1,l_2} M^{s\lambda}_{l_1l_2} M^{*s\lambda^{\prime}}_{l_1l_2}$$

э

The decay density matrix for the decay proess $A \rightarrow BC$ is given by

$$\begin{split} \Gamma'^{s}(\lambda,\lambda') &= \sum_{l_{1},l_{2}} \mathcal{M}^{s\lambda}_{l_{1}l_{2}} \mathcal{M}^{*s\lambda'}_{l_{1}l_{2}} \\ &= \left(\frac{2s+1}{4\pi}\right) e^{i(\lambda-\lambda')\phi} \sum_{l_{1},l_{2}} d^{s}_{\lambda l}(\theta) d^{s}_{\lambda' l}(\theta) |\mathcal{M}^{s}_{l_{1},l_{2}}|^{2} \end{split}$$

э

The decay density matrix for the decay proess $A \rightarrow BC$ is given by

$$\begin{split} \Gamma^{\prime s}(\lambda,\lambda^{\prime}) &= \sum_{l_{1},l_{2}} \mathcal{M}_{l_{1}l_{2}}^{s\lambda} \mathcal{M}_{l_{1}l_{2}}^{s\lambda^{\prime}} \\ &= \left(\frac{2s+1}{4\pi}\right) e^{i(\lambda-\lambda^{\prime})\phi} \sum_{l_{1},l_{2}} d_{\lambda l}^{s}(\theta) d_{\lambda^{\prime}l}^{s}(\theta) \left|\mathcal{M}_{l_{1},l_{2}}^{s}\right|^{2} \\ &= e^{i(\lambda-\lambda^{\prime})\phi} \sum_{l} d_{\lambda l}^{s}(\theta) d_{\lambda^{\prime}l}^{s}(\theta) \left[\sum_{l_{1}} \left(\frac{2s+1}{4\pi}\right) \left|\mathcal{M}_{l_{1},l_{1}-l}^{s}\right|^{2}\right] \end{split}$$

э

Γ

The decay density matrix

The decay density matrix for the decay proess $A \rightarrow BC$ is given by

$$\begin{aligned} -^{\prime s}(\lambda,\lambda') &= \sum_{l_{1},l_{2}} \mathcal{M}_{l_{1}l_{2}}^{s\lambda} \mathcal{M}_{l_{1}l_{2}}^{ss\lambda'} \\ &= \left(\frac{2s+1}{4\pi}\right) e^{i(\lambda-\lambda')\phi} \sum_{l_{1},l_{2}} d^{s}_{\lambda l}(\theta) d^{s}_{\lambda' l}(\theta) \left|\mathcal{M}_{l_{1},l_{2}}^{s}\right|^{2} \\ &= e^{i(\lambda-\lambda')\phi} \sum_{l} d^{s}_{\lambda l}(\theta) d^{s}_{\lambda' l}(\theta) \left[\sum_{l_{1}} \left(\frac{2s+1}{4\pi}\right) |\mathcal{M}_{l_{1},l_{1}-l}^{s}|^{2}\right] \\ &= e^{i(\lambda-\lambda')\phi} \sum_{l} d^{s}_{\lambda l}(\theta) d^{s}_{\lambda' l}(\theta) a^{s}_{l} \end{aligned}$$

э

The decay density matrix for the decay proess $A \rightarrow BC$ is given by

$$\begin{split} \Gamma^{\prime s}(\lambda,\lambda^{\prime}) &= \sum_{l_{1},l_{2}} \mathcal{M}_{l_{1}l_{2}}^{s\lambda} \mathcal{M}_{l_{1}l_{2}}^{s\lambda^{\prime}} \\ &= \left(\frac{2s+1}{4\pi}\right) e^{i(\lambda-\lambda^{\prime})\phi} \sum_{l_{1},l_{2}} d_{\lambda l}^{s}(\theta) d_{\lambda^{\prime}l}^{s}(\theta) \left|\mathcal{M}_{l_{1},l_{2}}^{s}\right|^{2} \\ &= e^{i(\lambda-\lambda^{\prime})\phi} \sum_{l} d_{\lambda l}^{s}(\theta) d_{\lambda^{\prime}l}^{s}(\theta) \left[\sum_{l_{1}} \left(\frac{2s+1}{4\pi}\right) \left|\mathcal{M}_{l_{1},l_{-}l}^{s}\right|^{2}\right] \\ &= e^{i(\lambda-\lambda^{\prime})\phi} \sum_{l} d_{\lambda l}^{s}(\theta) d_{\lambda^{\prime}l}^{s}(\theta) a_{l}^{s} \end{split}$$

 $|l_1| \leq s_1, \ |l_1 - l| \leq s_2, \ |l| \leq s \text{ and } \operatorname{Tr}(\Gamma'^s(\lambda, \lambda')) = \sum_l a_l^s$.

・ロット (日本) (日本) (日本)

The final distribution

The normalized decay density matrix is given by

$$\Gamma_{\mathcal{A}}(\lambda,\lambda') = e^{i(\lambda-\lambda')\phi} \quad \frac{\sum_{l} d_{\lambda l}^{s}(\theta) d_{\lambda' l}^{s}(\theta) a_{l}^{s}}{\sum_{l} a_{l}^{s}} = e^{i(\lambda-\lambda')\phi} \gamma_{\mathcal{A}}(\lambda,\lambda';\theta),$$

The final distribution

The normalized decay density matrix is given by

$$\Gamma_{\mathcal{A}}(\lambda,\lambda') = e^{i(\lambda-\lambda')\phi} \quad \frac{\sum_{l} d_{\lambda l}^{s}(\theta) d_{\lambda' l}^{s}(\theta) a_{l}^{s}}{\sum_{l} a_{l}^{s}} = e^{i(\lambda-\lambda')\phi} \gamma_{\mathcal{A}}(\lambda,\lambda';\theta),$$

and the final distribution is given by

The final distribution

The normalized decay density matrix is given by

$$\Gamma_{\mathcal{A}}(\lambda,\lambda') = e^{i(\lambda-\lambda')\phi} \quad \frac{\sum_{l} d_{\lambda l}^{s}(\theta) d_{\lambda' l}^{s}(\theta) a_{l}^{s}}{\sum_{l} a_{l}^{s}} = e^{i(\lambda-\lambda')\phi} \gamma_{\mathcal{A}}(\lambda,\lambda';\theta),$$

and the final distribution is given by

$$\frac{1}{\sigma} \frac{d\sigma}{d\Omega_B} = \frac{2s+1}{4\pi} \left[\sum_{\lambda} P_A(\lambda,\lambda) \gamma_A(\lambda,\lambda) + \sum_{\lambda \neq \lambda'} \Re[P_A(\lambda,\lambda')] \gamma_A(\lambda,\lambda') \cos((\lambda-\lambda')\phi) - \sum_{\lambda \neq \lambda'} \Im[P_A(\lambda,\lambda')] \gamma_A(\lambda,\lambda') \sin((\lambda-\lambda')\phi) \right].$$

Spin-1/2 case

The Collider Experiment Spin-1/2 case

The density matrix: s = 1/2

For
$$|\frac{1}{2}, l\rangle \rightarrow |s_1, l_1\rangle + |s_2, l_2\rangle$$

$$\Gamma_{\frac{1}{2}}(\lambda,\lambda') = \begin{bmatrix} \frac{1+\alpha\cos\theta}{2} & \frac{\alpha\sin\theta}{2} e^{i\phi} \\ \frac{\alpha\sin\theta}{2} e^{-i\phi} & \frac{1-\alpha\cos\theta}{2} \end{bmatrix},$$

Here
$$\alpha = (a_{1/2}^{1/2} - a_{-1/2}^{1/2})/(a_{1/2}^{1/2} + a_{-1/2}^{1/2})$$
 and

$$\begin{aligned} \mathbf{a}_{1/2}^{1/2} &= \left(\frac{1}{2\pi}\right) \sum_{l_1} |\mathcal{M}_{l_1,l_1-1/2}^{1/2}|^2 & |l_1| \leq s_1, \quad |l_1-1/2| \leq s_2 \\ \mathbf{a}_{-1/2}^{1/2} &= \left(\frac{1}{2\pi}\right) \sum_{l_1} |\mathcal{M}_{l_1,l_1+1/2}^{1/2}|^2 & |l_1| \leq s_1, \quad |l_1+1/2| \leq s_2. \end{aligned}$$

Angular distribution: s = 1/2

Polarization density matrix:

$$\mathcal{P}_{rac{1}{2}}(\lambda,\lambda')=rac{1}{2}\left[egin{array}{cc} 1+\eta_3&\eta_1-i\eta_2\ \eta_1+i\eta_2&1-\eta_3 \end{array}
ight],$$

Thus the angular distribution becomes:

$$\frac{1}{\sigma_1}\frac{d\sigma_1}{d\Omega_B} = \frac{1}{4\pi}\left[1 + \alpha\eta_3\cos\theta + \alpha\eta_1\sin\theta\cos\phi + \alpha\eta_2\sin\theta\sin\phi\right].$$

The $\cos \theta$ averaged azimuthal distribution is given by

$$\frac{1}{\sigma_1}\frac{d\sigma_1}{d\phi} = \frac{1}{2\pi}\left[1 + \frac{\alpha\eta_1\pi}{4}\cos\phi + \frac{\alpha\eta_2\pi}{4}\sin\phi\right].$$

Angular distribution: $e^+e^- ightarrow tar{t}$

▲□▶▲御▶★≣▶★≣▶ ≣ のQ@

The Collider Experiment Spin-1/2 case

Angular distribution: $e^+e^- ightarrow tar{t}$

$$\sqrt{s}=$$
 400GeV, $\eta_1=-0.75,~\eta_2pprox 0,\eta_3=-0.19$

э

A D F A B F A B F A B F

Spin-1 case

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ □

The density matrix: s = 1

For
$$|1, \textit{I}
angle
ightarrow |\textit{s}_1,\textit{I}
angle + |\textit{s}_2,\textit{I}_2
angle$$
,

$$\Gamma_1(l,l') = \left[\begin{array}{ccc} \frac{1+\delta+(1-3\delta)\cos^2\theta+2\alpha\cos\theta}{2\sqrt{2}} & \frac{\sin\theta(\alpha+(1-3\delta)\cos\theta)}{2\sqrt{2}} & e^{i\phi} & (1-3\delta)\frac{(1-\cos^2\theta)}{4} & e^{i2\phi} \\ \frac{\sin\theta(\alpha+(1-3\delta)\cos\theta)}{2\sqrt{2}} & e^{-i\phi} & \delta+(1-3\delta)\frac{\sin^2\theta}{2} & \frac{\sin\theta(\alpha-(1-3\delta)\cos\theta)}{2\sqrt{2}} & e^{i\phi} \\ (1-3\delta)\frac{(1-\cos^2\theta)}{4} & e^{-i2\phi} & \frac{\sin\theta(\alpha-(1-3\delta)\cos\theta)}{2\sqrt{2}} & e^{-i\phi} & \frac{1+\delta+(1-3\delta)\cos^2\theta-2\alpha\cos\theta}{4} \end{array} \right],$$

where,

$$\alpha = \frac{a_1^1 - a_{-1}^1}{a_1^1 + a_0^1 + a_{-1}^1} \qquad , \qquad \delta = \frac{a_0^1}{a_1^1 + a_0^1 + a_{-1}^1}$$

and

$$\begin{split} \mathbf{a}_{1}^{1} &= & \left(\frac{3}{4\pi}\right) \sum_{l_{1}} |\mathcal{M}_{l_{1},l_{1}-1}^{1}|^{2} & |l_{1}| \leq \mathfrak{s}_{1}, \ |l_{1}-1| \leq \mathfrak{s}_{2} \\ \mathbf{a}_{0}^{1} &= & \left(\frac{3}{4\pi}\right) \sum_{l_{1}} |\mathcal{M}_{l_{1},l_{1}}^{1}|^{2} & |l_{1}| \leq \min(\mathfrak{s}_{1},\mathfrak{s}_{2}) \\ \mathbf{a}_{-1}^{1} &= & \left(\frac{3}{4\pi}\right) \sum_{l_{1}} |\mathcal{M}_{l_{1},l_{1}+1}^{1}|^{2} & |l_{1}| \leq \mathfrak{s}_{1}, \ |l_{1}+1| \leq \mathfrak{s}_{2} \end{split}$$

Angular distribution: s = 1

Polarization density matrix:

$$P_{1}(\lambda,\lambda') = \begin{bmatrix} \frac{1}{3} + \frac{p_{z}}{2} + \frac{T_{zz}}{\sqrt{6}} & \frac{p_{x}-ip_{y}}{2\sqrt{2}} + \frac{T_{xx}-iT_{yz}}{\sqrt{3}} & \frac{T_{xx}-T_{yy}-2iT_{xy}}{\sqrt{6}} \\ \frac{p_{x}+ip_{y}}{2\sqrt{2}} + \frac{T_{xz}+iT_{yz}}{\sqrt{3}} & \frac{1}{3} - \frac{2T_{zz}}{\sqrt{6}} & \frac{p_{x}-ip_{y}}{2\sqrt{2}} - \frac{T_{xz}-iT_{yz}}{\sqrt{3}} \\ \frac{T_{xx}-T_{yy}+2iT_{xy}}{\sqrt{6}} & \frac{p_{x}+ip_{y}}{2\sqrt{2}} - \frac{T_{xz}+iT_{yz}}{\sqrt{3}} & \frac{1}{3} - \frac{p_{z}}{2} + \frac{T_{zz}}{\sqrt{6}} \end{bmatrix},$$

The angular distribution is:

$$\frac{1}{\sigma} \frac{d\sigma}{d\Omega} = \frac{3}{8\pi} \left[\left(\frac{2}{3} - (1 - 3\delta) \frac{T_{zz}}{\sqrt{6}} \right) + \alpha \ p_z \cos \theta + \sqrt{\frac{3}{2}} (1 - 3\delta) \ T_{zz} \cos^2 \theta \right]$$
$$+ \left(\alpha \ p_x + 2\sqrt{\frac{2}{3}} (1 - 3\delta) \ T_{xz} \cos \theta \right) \sin \theta \ \cos \phi$$
$$+ \left(\alpha \ p_y + 2\sqrt{\frac{2}{3}} (1 - 3\delta) \ T_{yz} \cos \theta \right) \sin \theta \ \sin \phi$$
$$+ \left(1 - 3\delta \right) \left(\frac{T_{xx} - T_{yy}}{\sqrt{6}} \right) \sin^2 \theta \cos(2\phi) + \sqrt{\frac{2}{3}} (1 - 3\delta) \ T_{xy} \sin^2 \theta \ \sin(2\phi)$$

Polarization asymmetries: $e^+e^- ightarrow ZZ$

Define $I(heta,\phi)=(1/\sigma)(d\sigma/d\Omega)$, then we have

$$\begin{aligned} A_{x} &= \left[\int_{\theta=0}^{\pi} \int_{\phi=-\frac{\pi}{2}}^{\frac{\pi}{2}} I(\theta,\phi) \sin(\theta) d\theta d\phi - \int_{\theta=0}^{\pi} \int_{\phi=\frac{\pi}{2}}^{3\frac{\pi}{2}} I(\theta,\phi) \sin(\theta) d\theta d\phi \right] \\ &= \frac{3\alpha p_{x}}{4} \\ &= \frac{\sigma(c_{x}>0) - \sigma(c_{x}<0)}{\sigma(c_{x}>0) + \sigma(c_{x}<0)} \end{aligned}$$

Here $c_x = \sin \theta \cos \phi$ in the rest frame of the decaying particle.

Similarly one can define asymmetries for other polarization parameters as well.

メロト (雪) (ヨ) (ヨ) (ヨ) ()

The Collider Experiment Spin-1 case

Correlations Asymmetries $A_x = \frac{3\alpha p_x}{4}$ $c_{\rm x} = \sin \theta \cos \phi$ $c_y = \sin \theta \sin \phi$ $A_y = \frac{3\ddot{\alpha}p_y}{4}$ $A_z = \frac{3\alpha p_z}{4}$ $c_z = \cos \theta$ $A_{xy} = \frac{2}{\pi} \sqrt{\frac{2}{3}} (1 - 3\delta) T_{xy}$ $c_{xy} = c_x c_y$ $A_{xz} = \frac{2}{\pi} \sqrt{\frac{2}{3}} (1 - 3\delta) T_{xz}$ $c_{xz} = c_x c_z$ $A_{yz} = \frac{2}{\pi} \sqrt{\frac{2}{3}} (1 - 3\delta) T_{yz}$ $c_{vz} = c_v c_z$ $c_{x^2-y^2} = c_x^2 - c_y^2$ $A_{yz} = \frac{1}{\pi} \sqrt{\frac{2}{3}} (1 - 3\delta) (T_{xx} - T_{yy})$ $A_{zz} = \frac{3}{8} \sqrt{\frac{3}{2}} (1 - 3\delta) T_{zz}$ $c_{vz} = \sin 3\theta$

イロト イボト イヨト イヨト

The Collider Experiment Spin-1 case

Polarization asymmetries: $e^+e^- \rightarrow ZZ$

Spin@Colliders

イロト イポト イヨト イヨト 三日

The Collider Experiment Spin-1 case

Polarization asymmetries: $e^+e^- \rightarrow Z\gamma$

Ritesh Singh

Spin@Colliders

э

Anomalous couplings in $e^+e^- \rightarrow ZZ/Z\gamma$ [R. Rahaman, RKS EPJC76 (2016)] including beam polarization [R. Rahaman, RKS EPJC77 (2017)]

- Anomalous couplings in $e^+e^- \rightarrow ZZ/Z\gamma$ [R. Rahaman, RKS EPJC76 (2016)] including beam polarization [R. Rahaman, RKS EPJC77 (2017)]
- ► Anomalous couplings in $e^+e^- \rightarrow W^+W^-$ including beam polarizations [R. Rahaman, RKS PRD101 (2020)]

- Anomalous couplings in $e^+e^- \rightarrow ZZ/Z\gamma$ [R. Rahaman, RKS EPJC76 (2016)] including beam polarization [R. Rahaman, RKS EPJC77 (2017)]
- ► Anomalous couplings in $e^+e^- \rightarrow W^+W^-$ including beam polarizations [R. Rahaman, RKS PRD101 (2020)]
- Anomalous couplings in $pp \rightarrow ZZ$ (leptonic channels) at LHC [R. Rahaman, RKS NPB948 (2019)]

- Anomalous couplings in $e^+e^- \rightarrow ZZ/Z\gamma$ [R. Rahaman, RKS EPJC76 (2016)] including beam polarization [R. Rahaman, RKS EPJC77 (2017)]
- ► Anomalous couplings in $e^+e^- \rightarrow W^+W^-$ including beam polarizations [R. Rahaman, RKS PRD101 (2020)]
- Anomalous couplings in $pp \rightarrow ZZ$ (leptonic channels) at LHC [R. Rahaman, RKS NPB948 (2019)]
- Anomalous coulings in $pp
 ightarrow ZW^\pm$ at LHC [R. Rahaman, RKS JHEP04(2020)075]

- Anomalous couplings in $e^+e^- \rightarrow ZZ/Z\gamma$ [R. Rahaman, RKS EPJC76 (2016)] including beam polarization [R. Rahaman, RKS EPJC77 (2017)]
- ► Anomalous couplings in $e^+e^- \rightarrow W^+W^-$ including beam polarizations [R. Rahaman, RKS PRD101 (2020)]
- Anomalous couplings in $pp \rightarrow ZZ$ (leptonic channels) at LHC [R. Rahaman, RKS NPB948 (2019)]
- Anomalous coulings in $pp
 ightarrow ZW^\pm$ at LHC [R. Rahaman, RKS JHEP04(2020)075]
- ► J. A. Aguilar-Saavedra et. al. PRD93 (2016), EPJC77 (2017) etc.

- Anomalous couplings in $e^+e^- \rightarrow ZZ/Z\gamma$ [R. Rahaman, RKS EPJC76 (2016)] including beam polarization [R. Rahaman, RKS EPJC77 (2017)]
- ► Anomalous couplings in $e^+e^- \rightarrow W^+W^-$ including beam polarizations [R. Rahaman, RKS PRD101 (2020)]
- Anomalous couplings in $pp \rightarrow ZZ$ (leptonic channels) at LHC [R. Rahaman, RKS NPB948 (2019)]
- Anomalous coulings in $pp
 ightarrow ZW^\pm$ at LHC [R. Rahaman, RKS JHEP04(2020)075]
- ► J. A. Aguilar-Saavedra et. al. PRD93 (2016), EPJC77 (2017) etc.

With two spin-full particles in the final state we can do more.

Spin-Spin Correlations

Spin-Spin Correlations

Polarization and Correlations

For single particle spin-polarization we have:

$$\frac{1}{\sigma}\frac{d\sigma}{d\Omega} \propto \mathbb{I} + \vec{P}.\vec{S} + T_{ij}S_iS_j + \dots$$

For two particle spin-polarization we have:

$$\begin{split} \frac{1}{\sigma} \frac{d^2 \sigma}{d\Omega_a d\Omega_b} &\propto \quad \mathbb{I} \otimes \mathbb{I} + \vec{P^A}.\vec{S} \otimes \mathbb{I} + T^A_{ij}S_iS_j \otimes \mathbb{I} \\ &+ \quad \mathbb{I} \otimes \vec{P^B}.\vec{S} + \mathbb{I} \otimes T^B_{ij}S_iS_j \\ &+ \quad \vec{P^A}.\vec{S} \otimes \vec{P^B}.\vec{S} + T^A_{ij}S_iS_j \otimes T^B_{ij}S_iS_j \\ &+ \quad \vec{P^A}.\vec{S} \otimes T^B_{ij}S_iS_j + T^A_{ij}S_iS_j \otimes \vec{P^B}.\vec{S} \end{split}$$

[R. Rahaman, RKS NPB984 (2022)]

イロト イポト イヨト イヨト 三日

Spin-Spin Correlations

Asymmetries

σ	A_{x}	A_{y}	A_{z}	A_{xy}	A_{xz}	A_{yz}	$A_{x^2-y^2}$	A_{zz}
A _x	Е	0	Е	0	Е	0	Е	Е
Ay	0	Е	0	Е	0	Е	0	0
Az	Е	0	E	0	Е	0	E	Е
A _{xy}	0	E	0	Е	0	Е	0	0
A_{xz}	Е	0	Е	0	Е	0	Е	Е
A_{yz}	0	Е	0	Е	0	Е	0	0
A _{x²-y²}	Е	0	Е	0	E	0	Е	Е
A_{zz}	Е	0	Е	0	Е	0	Е	Е

- 80 asymmetries + cross-section
- Asymmetries: 44 CP-even, 36 -odd

 45 asymmetries require flavor tagging, 35 dont.

Spin-correlations @ Collider Studies

▶ $e^+e^- \rightarrow W^+W^-$, anomalous couplings, light flavor tagging using ANN and BDT [A. Subba, RKS, 2212.12973]

Spin-correlations @ Collider Studies

- ▶ $e^+e^- \rightarrow W^+W^-$, anomalous couplings, light flavor tagging using ANN and BDT [A. Subba, RKS, 2212.12973]
- ▶ $e^+e^- \rightarrow W^+W^-$, anomalous couplings, light flavor tagging using ANN and BDT, using beam polarizations [A. Subba, RKS, 2305.15106]

Spin-Spin Correlations

Beyond two-particle correlations

► J. A. Aguilar Saavedra et.al.: Quantum entanglement and Bells inequalities in top pair [EPJC82 (2022)], in H → ZZ[PRD107 (2023)], in H → WW[2209.14033]

Beyond two-particle correlations

- ► J. A. Aguilar Saavedra et.al.: Quantum entanglement and Bells inequalities in top pair [EPJC82 (2022)], in H → ZZ[PRD107 (2023)], in H → WW[2209.14033]
- ▶ 2302.00683, Fabbrichesi et.al (See references for the detailed list).

Beyond two-particle correlations

- ► J. A. Aguilar Saavedra et.al.: Quantum entanglement and Bells inequalities in top pair [EPJC82 (2022)], in H → ZZ[PRD107 (2023)], in H → WW[2209.14033]
- ▶ 2302.00683, Fabbrichesi et.al (See references for the detailed list).
- ▶ $pp \rightarrow \bar{t}tZ$, two-body and three-body spin correlations, $\bar{t}tZ$ -anomalous couplings [R. Rahaman, JHEP03(2023)077]

Beyond two-particle correlations

- ► J. A. Aguilar Saavedra et.al.: Quantum entanglement and Bells inequalities in top pair [EPJC82 (2022)], in H → ZZ[PRD107 (2023)], in H → WW[2209.14033]
- ▶ 2302.00683, Fabbrichesi et.al (See references for the detailed list).
- ▶ $pp \rightarrow \bar{t}tZ$, two-body and three-body spin correlations, $\bar{t}tZ$ -anomalous couplings [R. Rahaman, JHEP03(2023)077]
- Three-body entanglement in particle physics [Sakurai, Spannowsky, 2310.01477]

Conclusions

Conclusions

 Polarization and spin-correlation asymmetries are very useful in probing anomalous couplings and BSM in general.

Conclusions

- Polarization and spin-correlation asymmetries are very useful in probing anomalous couplings and BSM in general.
- Study of Bell inequalities and quantum entanglements at collider is a hot topic in past two years.