

The upgrade of the CMS electromagnetic calorimeter: future prospects for precision timing and energy measurements at the High Luminosity LHC

Shubhi Parolia On behalf of CMS Collaboration

TIFR, Mumbai

ICHEPAP2023, 15 Dec 2023 Saha Institute of Nuclear Physics, Kolkata (India)

ECAL: overview

The CMS ECAL

- Hermetic homogeneous calorimeter
- Between tracker and hadronic 2.7 calorimeter

PbWO₄ scintillating crystal

- high density
- 80% light emission in 25 ns
- crystal dim. ~ em. shower

2.7(2.2) cm

Preshower

- Two Pb/Si planes
- 1.65 < |η|< 2.6

Endcaps

- 7324 crystals / endcap
- Vacuum Photo Triode readout
- 1.48 < |ŋ|< 3.00

Barrel

- 61200 crystals
- Avalanche photodiodes readout
- |η| < 1.48

Role of ECAL in Run-2 Physics

- Conception of ECAL was driven by H−>γγ search
 - Excellent energy resolution, and position resolution, led to the discovery and the precise characterization of the Higgs Boson in H-> $\gamma\gamma$ and H->ZZ channels
- Good timing resolution (~150 ps): key ingredient in searches for non conventional signatures like delayed jets.

Challenges faced so far..

- Increase in the integrated luminosity over time results in:
 - Crystals facing larger radiation dose.
 - Reduction in the light output of the crystals and radiation induced ageing of the photodetectors and the ECAL readout systems.
- Increase in pileup resulting from:
 - Higher bunch intensities.
 - Larger out of time pile up \rightarrow Impact on Pulse reconstruction.

Strategies used in Run 2

- Each channel is monitored with a dedicated laser system every 40 minutes and transparency corrections are provided every 48 hours.
- A "multifit" algorithm was developed to reconstruct the pulse amplitude considering out-of-time pulse effects mitigate the PU to at the reconstruction level. [JINST 15 P10002]
- Good ECAL energy response stability over time is obtained with regular calibrations.

HL-LHC

- Integrated luminosity expected to increase by a factor of 10 reaching ~3000fb⁻¹
- Increase of the LHC luminosity in order to meaningfully improve on the current results in a reasonable timeframe:
 - O(1%) precision on SM Higgs couplings
 - Rare Higgs Decays (e.g Hµµ) and production (e.g. HH)
 - Extending reach of BSM searches.
- HIGH RADIATION (due to high integrated lumi.)
 - Radiation levels up to 2x10¹⁶ neq/cm² or 1 Grad in the forward region or close to the collision point.
- HIGH PILEUP (due to high instant. lumi.)
 - \circ Multiple collision per event: 140 200

A typical event from a 2016 High PU ($\langle \mu \rangle = 100$) run

HL-LHC: upgrade requirements for optimal detector operations

- The basic goal of the upgrades to the CMS detector for operations at the HL-LHC is to maintain/improve the excellent performance of the detectors in terms of efficiency, resolution, and background rejection for all the physics objects used in the analysis of the data.
 - The ECAL must retain its performance during HL-LHC operations (Phase 2), when the pileup is 5-7 times larger
- Design requirements for ECAL operations in Phase 2:
 - Higher trigger rate (from 100 kHz to 750 kHz)
 - Higher data bandwidth
 - $\circ \quad \text{Higher radiation} \rightarrow \text{More noise}$
 - Higher pileup results in more "spikes" [anomalous high energy (≥ 100 GeV) signals induced by hadrons interacting directly with the APD core]

Precision timing as a tool to mitigate pileup

- Key idea: Under HL-LHC conditions timing information can be used to "separate" pileup vertices that otherwise appear to be "merged" in 3D space.
- This separation improves with the time resolution: ~30 ps resolution is already effective.
- The upgraded Barrel ECAL will provide precision timing information for high energy photon showers.
- The new Endcap calorimeter will provide precision timing information for both high energy photons and hadrons.
- The MIP Timing Detector (MTD) will be used at the HL-LHC for precision timing of all charged particles.

Upgrade for HL-LHC

ECAL Barrel (|η|<1.48):

- will retain significant light output and will be retained for HL-LHC operation.
- Reduce the operating temperature from 18°C to 9°C to mitigate APD ageing effects.
 - Dark current reduced by 50% while the light yield is increased by 18%.
- On-detector electronics replaced for precision timing and better trigger granularity.

ECAL Endcap (|η|>1.48):

- will suffer significant radiation damage after ~500 fb⁻¹
 - Replaced by High Granularity Calorimeter not covered in this talk

Legacy vs upgraded on-detector readout

Multi-gain pre-amplifier (MPGA):

- Charge sensitive amplifier
- 3 outputs, gain values: x1, x6 and x12

Multi channel ADC:

- ADC resolution: 12 bit
- ADC sampling frequency: 40 MS/s

Front-End Card:

- Data pipeline
- Trigger primitives generation
- Trigger data granularity: 5x5 crystals

CATIA ASIC:

- Trans-impedance Amplifier (TIA) arch.
- 2 outputs, gain values: x1 and x10

Lite-DTU ASIC

- ADC resolution: 12 bit
- ADC sampling frequency: 160 MS/s

New Front-End Card:

- Fast rad-hard optical links to stream crystal data off-detector through CERN lpGBT/VL
- Trigger data granularity: crystal level

Legacy vs upgraded on-detector readout

Multi-gain pre-amplifier (MPGA):

- Charge sensitive amplifier
- 3 outputs, gain values: x1, x6 and x12

Multi channel ADC:

- ADC resolution: 12 bit
- ADC sampling frequency: 40 MS/s

Front-End Card:

- Data pipeline
- Trigger primitives generation
- Trigger data granularity: 5x5 crystals

CATIA ASIC:

- Trans-impedance Amplifier (TIA) arch.
- 2 outputs, gain values: x1 and x10

Lite-DTU ASIC:

- ADC resolution: 12 bit
- ADC sampling frequency: 160 MS/s

New Front-End Card:

- Fast rad-hard optical links to stream crystal data off-detector through CERN lpGBT/VL
- Trigger data granularity: crystal level

Legacy vs upgraded on-detector readout

Multi-gain pre-amplifier (MPGA):

- Charge sensitive amplifier
- 3 outputs, gain values: x1, x6 and x12

Multi channel ADC:

- ADC resolution: 12 bit
- ADC sampling frequency: 40 MS/s

Front-End Card:

- Data pipeline
- Trigger primitives generation
- Trigger data granularity: 5x5 crystals

CATIA ASIC:

- Trans-impedance Amplifier (TIA) arch.
- 2 outputs, gain values: x1 and x10

Lite-DTU ASIC

- ADC resolution: 12 bit
- ADC sampling frequency: 160 MS/s

New Front-End Card:

- Fast rad-hard optical links to stream crystal data off-detector through CERN lpGBT/VL
- Trigger data granularity: crystal level 12

Test beams

- Beams tests are required for the testing and validation of each design parameter for the planned upgrade.
- It is a process carried out in systematic steps to ensure precision.
- 2018 and 2021 test beams were with 5x5 crystal matrix.
 - 2018: only with the CATIA-ASIC
 - 2021: with entire Very Front End (VFE) of upgrade design.
- 2022 and 2023 test beams were with 200 crystals and full representation.
 - 2022: full upgrade design of barrel was implemented.
 - 2023: physics runs with the finalised design taken.

- Test beam campaign carried out at the H4 beamline (Prevessin site)
- 5x5 crystal matrix equipped with Phase2 VFEs.

Some results from 2021 TB... (work in progress)

- Single crystal response in terms of average amplitude of the signal (in ADC counts) w.r.t. the energy of the incident electron-beam is shown.
- In the lower panel we report the deviation of the reconstructed energy (in ADC count) with respect to the linear fit, defined as

$$\frac{E_{reco} - E_{reco}^{fit}}{E_{reco}}$$

- With the upgraded readout, the ECAL crystal response is linear with respect to energy over a wide range.
- Maximum deviation from linearity is < 0.3% and it will improve with the studies on the full 5x5 matrix.

Energy resolution Vs beam energy

- Distribution of the total signal amplitudes in a 3x3 matrix around the central crystal.
 - crystal matrix intercalibration with dedicated runs at 100 GeV
- Fit function is a double side Crystal-Ball.
- Stochastic term S compatible with the expected value of 0.028 GeV^{1/2}.

2007 JINST 2 P04004

• Constant term within the requirements

Time resolution Vs deposited energy

- The time resolution is performed by comparing the time measurement over a single channel to that of an external timing reference detector placed along the beamline.
- The solid blue line represents the fit with the resolution function N/E ⊕ C, where N denotes the noise, C the constant term, and E the deposited energy.
- The constant term of about 13 ps meets the requirements for the Phase 2 design.

Simulation studies (work in progress)

- Simulation studies are being carried out in the geant4 environment, in order to validate the results with data.
 - The energy deposited in the crystals is studied by shooting the target crystal with 4-5 different energies.
- More detailed study is ongoing.

Private Work (CMS ECAL Simulation)

Summary

- The HL-LHC will enable measurements of Higgs boson properties with a very high precision as well as significantly extend the scope of new physics searches.
- The main challenges for the CMS detector are to cope with the high levels of radiation and to mitigate the impact of high pileup.
- The Phase-2 ECAL upgrades program is at an advance stage.
- Preliminary results from beam tests have shown promising results with the upgraded electronics :
 - Time resolution for high energy electron showers is obtained to be ~13ps.
 - Energy response shows linear behaviour.
 - Energy resolution is within the requirements.
 - Exciting results for Moliere radius measurements.
- Simulations results are to be compared with the data.

Thankc.

Backup...

Energy reconstruction in ECAL

Energy is measured using all crystals in a shower

CATIA ASIC performance in beam tests (2018)

ECAL beam tests were performed to test the CATIA amplifier chip for the upgrades :

- One ECAL tower (5*5 channels) equipped with a CATIA chip was connected with 160 MHz commercial ADC, FE and off-detector components.
- Electron beam, energy range: 25 250 GeV
- Single channel time resolution of ~30 ps obtained for an equivalent energy of 50 GeV.

• very pure e± beam ($\Delta p/p = 0.5\%$ with 20 2022 TB (12 days) 8 RUs of SM36 read out by 1 BCP 2023 TB (14 days) 9 RUs (+ MEM) of SM36 read out by 2 BCPs

Scope of the 2023 TB campaign:

- Very Front End ASICs: test VFEs with CATIA 2.1 (1 RU + 3 spares VFEs)
- TB2022: VFEs with CATIA 2.0
- BCP firmware: decompressed mode and synchronization between 2 BCP boards
- TB2022: single-BCP read-out, compressed mode only
- Laser read-out: FEM and MEM, read out by BCP

Impact of precision timing on precision physics measurements

- If the chosen $H \rightarrow \gamma \gamma$ vertex is within ~1 cm the mass resolution is dominated by the photon energy resolution.
- The H→γγ vertex localization efficiency is improved significantly with precision timing (~30 ps) information of EM showers.
- ~10% improvement in the fiducial cross-section sensitivity and $H \rightarrow \gamma \gamma$ resolution compared to no precise timing case.
- The new readout chain is specified to deliver the desired time resolution of 30ps for energies > 50 GeV

$$\mathbf{m}_{\gamma\gamma} = \sqrt{[2.\mathbf{E}_{\gamma1}.\mathbf{E}_{\gamma2}.(1 - \cos \theta_{12})]}$$

