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. Kolmogorov's definition of probability
. Bayes theorem

. Uniform random numbers

. Distribution of random numbers

. Histogram

. Probability mass functions and density
functions (mostly from Glen Cowan's book and
notes)



Events, Sample space

The set of all possible outcomes of a particular experiment is called
the sample space S for that experiment

Cointoss S ={H,T}
Tossing two coins S ={HH, HT, TH, TT }

Event : Any subset of S
Random variables: variables characterising events

Momentum of an electron produced in the reaction pp — Z — e+e-



A definition of probability

Consider a set S with subsets 4, B, ...

For all AC S,P(A) >0

P(S) =1
Kolmogorov
If ANB=0,P(AuUB) = P(A) + P(B) axioms (1933)

From these axioms we can derive further properties, e.g.

P(A) = 1 — P(A)

P(AUA) =1

P =0

if AC B, then P(A) < P(B)

P(AUuB)=P(A)+ P(B)— P(ANnB) G. Cowan, UC

London lectures



Probability mass, density functions

P(x found in [z, + dz]) = f(x) dx
— f(x) = probability density function (pdf)

O @)
/ f(zx)dx =1 x must be somewhere
o0

Or for discrete outcome x; withe.g. i =1, 2, ... we have
P(xz;) = p; probability mass function

» P(z;) =1 x must take on one of its possible values
()



Conditional probability, independence

Also define conditional probability of 4 given B (with P(B) # 0):

P(ANB
P(A|B) = ( )
P(B)
E.g. rolling dice: P(n < 3|neven) = P((n;:zvr;nf';even) == % — %
Subsets 4, B independent if: P(ANB) = P(A)P(B)
. _ P(A)P(B) _
If 4, B independent, P(A|B) = PB) P(A)
N.B. do not confuse with disjoint subsets, 1.e., AN B =
G. Cowan, UC

London lectures



Bayes’ theorem

From the definition of conditional probability we have,

P(AN B)
P(B)
but P(ANB) = P(BNA),so

P(A|B) =

and P(BJA) =

P(BN A)

peal) = PBIAP(A)

P(B)

First published (posthumously) by the
Reverend Thomas Bayes (1702—1761)

An essay towards solving a problem in the
doctrine of chances, Philos. Trans. R. Soc. 53

P(A)

Bayes’ theorem

(1763) 370; reprinted in Biometrika, 45 (1958) 293. 6. cowan, uc

London lectures



The law of total probability B

Consider a subset B of
the sample space S, S i

divided 1nto disjoint subsets 4,
such that U.4. = §,

— B=BnNS=BN(U;4;) =U;(BNA;), i
— P(B) = P(Ui(BNA4;)) =%, P(BNA;)
— P(B) =%, P(B|A;)P(A;) law of total probability

P(B|A)P(A)
> P(B|A;)P(A;)

Bayes’ theorem becomes | P(A|B) =

G. Cowan, UC
London lectures



An example using Bayes’ theorem

Suppose the probability (for anyone) to have AIDS 1s:
P(AIDS) = 0.001 « prior probabilities, i.¢.,
P(no AIDS) = 0.999 before any test carried out

Consider an AIDS test: result 1s + or —

P(+|AIDS) = 0.98 « probabilities to (in)correctly
P(—|AIDS) = 0.02 identify an infected person

P(+4|no AIDS) = 0.03 <« probabilities to (in)correctly
P(—|no AIDS) = 0.97 1dentify an uninfected person

Suppose your result 1s +. How worried should you be?

G. Cowan, UC
London lectures



Mean, Variance, Skewness, kurtosis

. Variance iIs the second
standardised moment A
. 3 and 4" standardized ! /\
moments (Pearson
moments)

......................

Negative Skew Positive Skew



Covariance, correlation

Vey = El(z — pz)(y — py)] = Elzy] — pzpy

= / / zy f(z,y)dzdy — prpy,

denoted cov|z, y]



Covariance, correlation 2

covla,b] =

Pry =

OOy

Ef(a = pa) (b — p)]

Cl

Halb

b] —
/ f abg(a,b)dadd — pgpp

/ / a(x) b(x) f(x)dzy.. . dz

Prove —1 < pzy <1

n — Halb



Scatter plot and regression

= =10.821 ~=10.493 —~=0.0526




exponential

Coffee Temperature (C)
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Exponential 2

8 7)== le_t/'r (7= mean lifetime)
75
. E[t] =1
. V[t] = 1°

. Memoryless: f(t —tglt > tg) = f(t)
. Cosmic muon lifetime experiment

e Homework: Check the statements



binomial

. Out of ten generated uniform random numbers, in {0,1}
how many will fall in the interval {0,0.1}7

- Random, with average 1

. What is the probability that exactly two uniform random
numbers out of ten generated urn's in {0,1}will fall
between {0,0.1}

. ("CH)p"(1-p)N" |p=0.1,N=10,n =2

= N! ) .
Eln] = Z% " n!(N — n)! P (1-p)" 7" = Np

Vin] = E[n*] - (E[n])’
= Np(1-p).



Multinomial distribution

Like binomial but now m outcomes instead of two, probabilities are

m
1=1

For N trials we want the probability to obtain:

n, of outcome 1,
n, of outcome 2,

n, of outcome m.

This is the multinomial distribution for 7 = (n1,...,nm)
N
nilnol - npy!
G. Cowan, UC

London lectures



pOISSON

Consider binomaial 7 1n the Iimit

N — oo, p — 0O, En] = Np—v.
— n follows the Poisson distribution: S "
" il
vV L
. ~— | I
f(TL, l/) — —'6 (n Z O) ¥ o 5 10 15 20
n! .
~ 04
é v-5
Elnl=v, Vn]l=v. 02 |
o Lrc I ~‘ H { H 1 | .
0 5 10 5 20
Example: number of scattering events S —
; : 2 2 s e
n with cross section o found for a fixed =1 it
. . . . a0l ] ] |
integrated luminosity, withv = o [ Ldt. 5% % =

n



Gaussian (normal)

Multivaniate Gaussian pdf for the vectorZ = (z1,...,2Zn)

oo o 1 Licy  emTrp—Tfes =
F@E V) = a5 @~ DTV HE - B

_ -

T, [k are column vectors, 71 : ﬁ[ are transpose (row) vectors,

Elx;] = p;, , coviz;,z;] =V .

For n = 2 this 1s
1

f(*(l?la T2y, 11, H2,01,02, /)) —

| 2
2mwoq102y\/1 —p

2 2
1 1 — U1 To — o 1 — M1 To — UD
Xexp s — — 2
p{ 2(1 - p?) [( o1 ) +( 02 "\ o o

where p = cov|x,, x,]/(0,05) 1s the correlation coefficient.




Characteristic functions

bz (k) = E[e*®] = /_Oo e'*® f(z)dz.

. Characteristic functions are fourier transforms
of pdf, in one to one correspondence with the
pdf's

. For sum of random variables % = 2_i %i
/.../exp (ikz:xi) fi(21) - falzn)dzy .. .d2,
=1

./eikxlfl(xl)dxl /eikxnfn(xn)d:vn
1 *° :
- Z) == — B k e-—-zkz dk .
QS]‘(k) ot ¢n(k) 7(2) 27 [_oo Ras)

¢z (k)




Characteristic functions 2

Distribution p.d.f. o (k)
Binomial f(niN,p) = =y P* (1 =)V " [p(e’* — 1) + 1]V
Poisson f(n;v) = Lre™v exp[v(et* —1)]

1 a < x < ﬂ T 1O
Uniform HETN) TR et ik

0 otherwise

Exponential f(z;8) = ge~=/¢ T=kE
Gaussian of (s iy 02 )= :E%—r? exp (:-g%;zﬁf—) exp(ipk — Lo?k?)
Chi-square f(z3n) = sepprymy 2™/ 27 te /2 (1 — 2ik)~"/2

Cauchy f(2) = & 132 g5l



Characteristic functions 3

dk™

k=0 k=0
— /zm f(2)dz
= "y,
. d . 1 2 2
Elz] = —za-,;[exp(zuk — Lo0°k%)] =i,
k=0
Viz] = E[2°] - (E[z])®
d2 . 1 .22 2 2
= _EE[GXP(ZM — 20°k*)] —~ =
k=0




Characteristic function 4

$(k) = [p(e™ —1) + 1]7.
Taking the imit p - 0, N — oo with v = pN constant gives

(k) = (%(eikﬂ—- 1) + I)N — exp(v(eF — 1],
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[0 T1/2/x* %)/ (pow(x-[2],2)+[11"[11/4) |

A VS ] L v
95 100 105

" 4 [",/2
7Tr2/4+ (x — .’BQ)2

fleslag) =

(I' =2, x, = 0 1s the Cauchy pdf.)

E(Xx) is not well
defined

V(x) tends to infinity
Mode x0
. Fwhm: T



Student's t

(Y (L ey ()
HEiv) = e re/2) (1 T 7>
Elg] =0 (v>1) B _..
V[:):]:Ui (v > 2) ‘_

v=number of degrees of freedom
(not necessarily integer)

v=1 gives Cauchy,

v — oo gives Gaussian.



. Charged particle
lonization Is used to
detect radiation

- Cosmic radiation was
detected with Wulf
electrometer

- Mars rover RAD detects
radiation using ionization ¢

7 Aug. 2012

. Delta rays give a long
tail in energy loss due
to ionization - Landau L




Landau distribution

1
: e A
f(A;B) = £<f)(>\) ; L
1 - /3 +=+
d(AN) = —/ exp(—ulnu — Au) sinmudu ,
™ JO
1 ¢ = d =
)\Z—{A—f(ln—-l—l—’yE)] :
¢ &
. 27rNAe4z2pZZ d i I? e><pB2
§= mec? S A B2’ = 2mec?32~2 .

. All moments infinite!



Chi-square (X?)

A cooling mug of coffee measured by a TI TMPO006 temperature sensor
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Probability

J‘I
2.

p-value

Most Likely Observation

.

Very Un-likely
Observations

Very Un-likely
Observations

Observed

Data Point
N

Set of Possible Results

A (shaded green area) is the probability of an
observed (or more extreme) result arising by chance

Source: wikipedia



Sum of random numbers?

. Question: How is the sum of two uniform
random numbers distributed?

. How is the sum of many uniform random
numbers distributed?



Central limit theorem

. Consider sum (xj) with mean mu_j and standard deviation

sigma_|
2i—
y; = J\/;l_ J
o0 'dmd, Em
¢i(k) = 7= N
4 ;?—___: dk™ |,._, m!
o0 .
_ (k)™ o om
_ 1__’?_2_02 ik® E[(z; ﬂa)a]_’_“ |




Central limit theorem 2

¢ (k) = H¢j(k)= (1—- kg2 kBl — py)] +)

2n 3! n3/2

Neglecting higher orders

k? &

¢.(k) = (1 — —0'2) — exp (—10%k?)
2n

Gaussian with mean 0 and variance sigma®”2

. Transforming back, one gets Gaussian with sum (mu_j) and
variance n*sigma”2

Important: sample mean is Gaussian distributed

Fails for L. andau Cauchv
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TABLE OF COMMON DISTRIBUTIONS

Discrete
uniform

a=B=\

Ben-binomial.
(n, a,B)

o
pP= a+B
a+f—~o

-
-
-

Hypergeometric
(M,N,K)

—

“p=M/N,n=K

N—-o

Bernoulli
(p)

Weibull
(v, N)

Uniform

—Alog X

Double
exponential

627






Linear Congruential Generator

. Goal: Generate Un uniform in the interval [0,1)

. Generate Xn in [0,m), Un = Xn/m

. Xn+1 = (a*Xn + ¢)%m — Linear congruential series
. Four constants required

. XO (starting value/seed), a (multiplier), c (increment/bias),m
(modulus)

X0=a=c=/,m=10willgive 7,6,9,0, 7,6, 9,0, ...

- Four magic numbers required:



Linear Congruential Generator 2

. Xn+1 =(65539*Xn)%pow(2,31)

. This is essentially RANDU, most popular generator for many
years
- Multiplicative congruential method (Lehman's original method)

- Mixed congruential method C 1= 0

For the math (number theory):

http://www.math.cornell.edu/~mec/Winter2009/Luo/Linear%20Congru
ential%20Generator/linear%20congruential%20gen1.html



Code for linear congruential generator

#include <iostream>
#include <ostream>
#include <cmath>
#include <TMath.h>
#include <TRandom2.h>
#include <TH1.h>
#include <TH1D.h>
#include <TCanvas.h>
#include <TStyle.h>

double GetUniform()
{

Static int X0 = 12345, m =0, Xn =
0;
m = pow(2,31);

Xn=XO0;

Xn = (65539*Xn)%m,;

return (double)Xn/(double)m;

}

int main(){

std::cout<<GetUniform()<<std::endl;



Marsaglia
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RANDOM NUMBERS FALL MAINLY IN THE PLANES

By GEORGE MARSAGLIA

MATHEMATICS RESEARCH LABORATORY, BOEING SCIENTIFIC RESEARCH LABORATORIES,
SEATTLE, WASHINGTON

Communicated by G. S. Schazirer, June 24, 1968

Virtually all the world’s computer centers use an arithmetic procedure for
generating random numbers. The most common of these is the multiplicative
congruential generator first suggested by D. H. Lehmer. In this method, one
merely multiplies the current random integer I by a constant multiplier K and
keeps the remainder after overflow:

new I/ = K X old I modulo M.

The apparently haphazard way in which successive multiplications by a large
integer K produce remainders after overflow makes the resulting numbers work
surprisingly well for many Monte Carlo problems. Scores of papers have re-
ported favorably on cycle length and statistical properties of such generators.
The purpose of this note is to pomt out that all multiplicative congruential

= EIEPEAEDICOEIREREE Y )




The purpose of this note is to point out that all multiplicative congruential

random number generators have a defect—a defect that makes them unsuit-
able for many Monte Carlo problems and that cannot be removed by ad-
justing the starting value, multiplier, or modulus. The problem lies in the
“crystalline’” nature of multiplicative generators—if n-tuples (uius,...,un),
(us,Us, . . ., Uny1),. .. Of uniform variates produced by the generator are viewed
as points in the unit cube of » dimensions, then all the points will be found
to lie in a relatively small number of parallel hyperplanes. Furthermore, there
are many systems of parallel hyperplanes which contain all of the points; the
points are about as randomly spaced in the unit n-cube as the atoms in a perfect
crystal at absolute zero.

One can readily think of Monte Carlo problems where such regularity in
‘“random’’ points in n-space would be unsatisfactory; more disturbing is the
possibility that for the past 20 years such regularity might have produced bad,
but unrecognized, results in Monte Carlo studies which have used multiplicative
generators.



Multiply with carry

uint GetUint()
.+ 1
m_z =36969 * (m_z & 65535) + (m_z >> 16);

. m_w=18000* (m w & 65535) + (m_w >>
16);

return (m_z << 16) + m_w;



Test of randomness

. Diehard tests (marsaglia 1995)

. Birthday spacings, parking lot test, the craps
test, monkey tests (based on infinite monkey
theorem), count the 1's,...

. See
eg:http://en.wikipedia.org/wiki/Diehard_tests



Test with linear congruential numbers






Other distributions from uniform variate

. Uniform random numbers can be used to
generate other distributions

. Let x be uniform in (0.,1.), we want a new
random number a in (a1,a2) distributed as g(a)

Conservation of probability:
. g(a)da = f(x)dx; f(x) = 1.
. g(a) = |dx/da|
. If g(a) is desired to be exponential then:
. (1/D)*exp(-a/D) = |dx/da| (D = const parameter)



Usfulness of randomness

. What is the probability of getting two sixes in 10
throws of a fair dice”?

. Example code dicethrow

. What is the probability of two successive sixes
in 10 throws of a dice?

. Modify dicethrow



