# **Electroweak Unification and the Standard Model**

#### Lecture 1

Sreerup Raychaudhuri

TATA INSTITUTE OF FUNDAMENTAL RESEARCH Mumbai, India

HEPAP-DAS 2023 PRE-SCHOOL

SINP

December 6, 2023

# Natural units:

we shall use relativity + quantum mechanics: convenient to set

c = 1 and  $\hbar = 1$ 

**Dimensions:** 

$$[c] = LT^{-1} \Rightarrow L = T$$
  

$$E = \hbar\omega \Rightarrow [E] = [T^{-1}]$$
  

$$E = mc^{2} \Rightarrow [E] = M$$
  

$$L = T = M^{-1} = [E]^{-1}$$

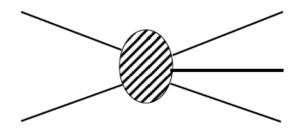
conventional to write everything in units of energy (GeV)

1 GeV<sup>-1</sup> = 0.1973 fm (1 femtometre =  $10^{-15}$  m) 1 GeV<sup>-2</sup> = 0.3894 mb (1 millibarn =  $10^{-27}$  cm<sup>2</sup>) 1 GeV<sup>-1</sup> = 0.6582x10<sup>-22</sup> s Thanks to Feynman, we can express the results of RQFT in terms of diagrams which are easy to understand physically. Thus, we can get away, up to a certain point, without learning RQFT.

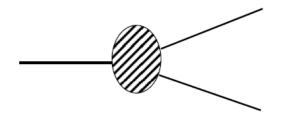
What can elementary particles do?

Scattering processes

cross-section  $\sigma$ 



Decay processes
 decay width Γ



What makes such processes happen?

Four fundamental interactions:

- gravitation  $F \propto G_N m^2$
- electromagnetism  $F \propto e^2/4\pi\varepsilon_0$
- strong (nuclear) interaction  $F \propto g_s^2$
- weak (nuclear) interaction  $F \propto G_F$

At high energies, electromagnetism and weak interactions unify to form the *electroweak interaction*. Decay processes can be used to determine the nature of the interaction.

A decaying state evolves with time as  $e^{-\Gamma t/\hbar}$ i.e. the (mean) lifetime is  $\tau = \frac{\hbar}{r}$ 

From quantum mechanics, it can be shown that  $\Gamma \propto g^2$  where

$$g^{2} = \begin{cases} G_{N} & \text{for gravitation} \\ \frac{e^{2}}{4\pi\varepsilon_{0}} & \text{for electromagnetism} \\ g_{S}^{2} & \text{for strong interactions} \\ G_{F} & \text{for weak interactions} \end{cases}$$

# Thus, the lifetime of a process satisfies

i.e. the stronger the interaction, the shorter the lifetime.

 $\tau \propto \frac{\hbar}{g^2}$ 

7

| Interaction                 | τ                             | $\ell = c\tau$     |
|-----------------------------|-------------------------------|--------------------|
| Strong interaction          | $\sim 10^{-23}$ s             | $\sim 10^{-13}$ cm |
| Electromagnetic interaction | $\sim \! 10^{-16} \mathrm{s}$ | $\sim 10^{-6}$ cm  |
| Weak interactions           | $\sim 10^{-9}$ s              | ~10 cm             |
| Gravitational interaction   | $\sim 10^{+22} s$             | $\sim 10^{+34}$ cm |

Only weakly-decaying particles will leave observable tracks

# **Classification of particles according to interactions:**

ELEMENTARY PARTICLES

## Some well-known particles:

CHARGED LEPTONS: electron  $(e^-)$ , muon  $(\mu^-)$ , tau  $(\tau^-)$ NEUTRINOS: electron-neutrino  $(\nu_e)$ , muon neutrino  $(\nu_{\mu})$ , tau neutrino  $(\nu_{\tau})$ MESONS: pions  $(\pi^+, \pi^0)$ , kaons  $(K^+, K^0)$ , rho  $(\rho^+, \rho^0)$ , eta  $(\eta^0)$ , etc. BARYONS: proton  $(p^+)$ , neutron  $(n^0)$ , Delta  $(\Delta^{++}, \Delta^+, \Delta^0)$ , Lambda  $(\Lambda^0)$ , Sigma  $(\Sigma^+, \Sigma^0)$ , cascade  $(\Xi^+, \Xi^0)$ , Omega-minus  $(\Omega^-)$ 

GAUGE BOSONS: photon ( $\gamma$ ), W-boson ( $W^+$ ), Z-boson ( $Z^0$ ), gluons (g)

## Each has its own antiparticle:

ANTI-LEPTONS: positron  $(e^+)$ , anti-muon  $(\mu^+)$ , anti-tau  $(\tau^+)$ NEUTRINOS: electron-antineutrino  $(\bar{\nu}_e)$ , muon antineutrino  $(\bar{\nu}_{\mu})$ , tau antineutrino  $(\bar{\nu}_{\tau})$ ANTI-MESONS: pions  $(\pi^-, \pi^0)$ , Kaons  $(K^-, \bar{K}^0)$ , rho  $(\rho^-, \rho^0)$ , eta  $(\eta^0)$ , etc. ANTI-BARYONS: antiproton  $(p^-)$ , antineutron  $(\bar{n}^0)$ , Delta  $(\Delta^{--}, \Delta^-, \Delta^0)$ , Lambda  $(\Lambda^0)$ , Sigma  $(\Sigma^-, \Sigma^0)$ , Cascade  $(\Xi^-, \bar{\Xi}^0)$ , Omega-plus  $(\Omega^+)$ GAUGE BOSONS: photon  $(\gamma)$ , W-boson  $(W^-)$ , Z-boson  $(Z^0)$ , gluons (g)

# Nöther's Theorem and conserved quantum numbers

Consider a system with a Lagrangian  $L = L(q_1, q_2, ..., q_n, \dot{q}_1, \dot{q}_2, ..., \dot{q}_n)$ such that under a transformation  $q_i \rightarrow q_i + \varepsilon \eta_i$ , for all i, the Lagrangian remains unchanged. We call this a symmetry of the system.

It follows that, treating  $\varepsilon$  as a parameter:  $\frac{\partial L}{\partial \varepsilon} = 0$ or, more explicitly,

$$\sum_{i=1}^{n} \left( \frac{\partial L}{\partial q_i} \eta_i + \frac{\partial L}{\partial \dot{q}_i} \dot{\eta}_i \right) = 0$$

Substituting the Euler-Lagrange equations

$$\frac{\partial L}{\partial q_i} = \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}_i} \right)$$

we get

or,

$$\sum_{i=1}^{n} \left[ \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}_{i}} \right) \eta_{i} + \frac{\partial L}{\partial \dot{q}_{i}} \frac{d\eta_{i}}{dt} \right] = 0 \quad \text{or,} \quad \sum_{i=1}^{n} \frac{d}{dt} \left[ \frac{\partial L}{\partial \dot{q}_{i}} \eta_{i} \right] = 0$$
$$\frac{d}{dt} \left( \sum_{i=1}^{n} \frac{\partial L}{\partial \dot{q}_{i}} \eta_{i} \right) = 0$$

i.e. we have a conserved quantity

$$Q = \sum_{i=1}^{n} \frac{\partial L}{\partial \dot{q}_i} \eta_i$$

Thus we have proved <u>Nöther's Theorem</u>: to every symmetry of a Lagrangian system there corresponds a conserved quantity. The conserved quantity Q is called the <u>Nöther charge</u>.

### Typical conserved quantities and the corresponding symmetries:

Electroweak Unification and the Standard Model : Lecture-1

#### Lagrangian Field Theory

Let  $\psi(x)$  be a field defined on a Minkowski space with coordinates x i.e. for every value of x there is a value of  $\psi(x)$ .



If we treat  $\psi(x)$  at every point x as a generalised coordinate, then clearly this is a system with *infinite* number of degrees of freedom. In Lagrangian dynamics, this will be described by a Lagrangian L $L = \int d^3 \vec{x} \ \mathcal{L}(\psi(x), \partial_\mu \psi(x))$ 

where  $\mathcal{L}$  is the Lagrangian density and the integral is over all space. The action integral will be given by

$$S = \int dt \ L = \int d^4x \ \mathcal{L}(\psi(x), \partial_{\mu}\psi(x))$$

The dynamics of this field will be driven by Hamilton's Principle, viz. <sup>14</sup>

if  $\psi(x) \rightarrow \psi(x) + \delta \psi(x)$  then  $\delta S = 0$ 

This will lead to Euler-Lagrange equations

$$\partial_{\mu} \left[ \frac{\partial \mathcal{L}}{\partial \{ \partial_{\mu} \psi(x) \}} \right] - \frac{\partial \mathcal{L}}{\partial \psi(x)} = 0$$

If there are many fields  $\psi_1(x), \psi_2(x), \dots, \psi_n(x)$  the Lagrangian is

$$L = \int d^3 \vec{x} \ \mathcal{L}\left(\psi_1(x), \dots, \psi_n(x), \partial_\mu \psi_1(x) \dots, \partial_\mu \psi_n(x)\right)$$

and there are *n* sets of Euler-Lagrange equations...

The action integral will be given by

$$S = \int dt \ L = \int d^4x \ \mathcal{L}\left(\psi_1(x), \dots, \psi_n(x), \partial_\mu \psi_1(x) \dots, \partial_\mu \psi_n(x)\right)$$

#### Nöther's Theorem (again!)

If, under a transformation  $\psi_i(x) \rightarrow \psi_i(x) + \delta \psi_i(x)$ , we have  $\delta \mathcal{L} = 0$ , this will be called a symmetry of the system.

For an infinitesimal change, it follows that

$$\delta \mathcal{L} = \frac{\partial \mathcal{L}}{\partial \{\partial_{\mu} \psi_i\}} \delta \{\partial_{\mu} \psi_i\} + \frac{\partial \mathcal{L}}{\partial \psi_i} \delta \psi_i$$

As before, substitute the Euler-Lagrange equations

$$\frac{\partial \mathcal{L}}{\partial \psi_i} = \partial_\mu \left[ \frac{\partial \mathcal{L}}{\partial \{\partial_\mu \psi_i\}} \right]$$

to get

$$\delta \mathcal{L} = \sum_{i} \frac{\partial \mathcal{L}}{\partial \{\partial_{\mu} \psi_{i}\}} \partial_{\mu} \{\delta \psi_{i}\} + \partial_{\mu} \left[ \frac{\partial \mathcal{L}}{\partial \{\partial_{\mu} \psi_{i}\}} \right] \delta \psi_{i} = \sum_{i} \partial_{\mu} \left[ \frac{\partial \mathcal{L}}{\partial \{\partial_{\mu} \psi_{i}\}} \delta \psi_{i} \right]$$

i.e.

$$\delta \mathcal{L} = \partial_{\mu} \sum_{i} \frac{\partial \mathcal{L}}{\partial \{\partial_{\mu} \psi_{i}\}} \delta \psi_{i} = \partial_{\mu} j^{\mu}$$

where  $j^{\mu} = \sum_{i} \frac{\partial \mathcal{L}}{\partial \{\partial_{\mu} \psi_{i}\}} \delta \psi_{i}$  is called the <u>Nöther current</u>.

Now, for a symmetry,  $\delta \mathcal{L} = 0 \Rightarrow \partial_{\mu} j^{\mu} = 0$ 

i.e. we get an equation of continuity for the Nöther current.

Written out explicitly, the equation of continuity assumes the usual form, i.e.

$$\partial_{\mu}j^{\mu} = 0 \implies \partial_{t}j^{0} + \vec{\nabla}.\vec{j} = 0$$

Now, integrating over all space,

$$\partial_t \int d^3 \vec{x} \, j^0 + \int d^3 \vec{x} \, \vec{\nabla} \cdot \vec{j} = 0 \qquad \Rightarrow \partial_t \int d^3 \vec{x} \, j^0 + \oint \vec{j} \cdot \hat{n} \, ds = 0$$
  
i.e.  $\partial_t \int d^3 \vec{x} \, j^0 = 0$ 

We define  $Q = \int d^3 \vec{x} j^0$  as the <u>Nöther charge</u>



Emmy Nöther (1882 – 1935) proved her famous theorem in 1915. She was one of the first women to hold an official professorship in a European University – at Göttingen. She did pioneering work on invariants, abstract algebra and topology. In 1933 she moved to the USA, where she died of cancer after two years. The Lagrangian density

$$\mathcal{L} = \partial^{\mu} \varphi^{*}(x) \partial_{\mu} \varphi(x) - M^{2} \varphi^{*}(x) \varphi(x)$$

is manifestly invariant under a global gauge transformation

$$\varphi(x) \to \varphi'(x) = e^{-ig\theta} \varphi(x)$$

where  $\theta$  is an arbitrary (real) constant and g is a (real) constant specific to the field...

Also: 
$$\varphi(x) = \frac{1}{\sqrt{2}} [\varphi_1(x) + i\varphi_2(x)]$$
 and  $\varphi^*(x) = \frac{1}{\sqrt{2}} [\varphi_1(x) - i\varphi_2(x)]$   
 $\varphi'_1(x) = \varphi_1(x) \cos g\theta - \varphi_2(x) \sin g\theta$   
 $\varphi'_2(x) = \varphi_1(x) \sin g\theta + \varphi_2(x) \cos g\theta$ 

$$\begin{cases} \text{complex} \\ \text{rotation} \end{cases}$$

This set of transformations forms an Abelian (commutative) group

### Proof:

Group product  $\Rightarrow$  successive transformations  $\varphi(x) \rightarrow e^{-ig\theta_2}e^{-ig\theta_1}\varphi(x)$ 

19

1. closure :  $e^{-ig\theta_2}e^{-ig\theta_1} = e^{-ig(\theta_2+\theta_1)}$ 

2. associativity : 
$$e^{-ig\theta_3}(e^{-ig\theta_2}e^{-ig\theta_1}) = (e^{-ig\theta_3}e^{-ig\theta_2})e^{-ig\theta_1}$$
  
=  $e^{-ig(\theta_3+\theta_2+\theta_1)}$ 

- 3. *identity* :  $\theta = 0$  ;  $e^0 = 1$
- 4. inverse :  $e^{+ig\theta}e^{-ig\theta} = e^0 = 1$
- 5. commutativity:  $e^{-ig\theta_2}e^{-ig\theta_1} = e^{-ig\theta_1}e^{-ig\theta_2} = e^{-ig(\theta_1+\theta_2)}$

This set of phases  $e^{-ig\theta}$  forms the group of unitary 1×1 matrices: U(1) These are global U(1) gauge transformations Nöther current corresponding to the global U(1) gauge symmetry:

$$j^{\mu} = \frac{\partial \mathcal{L}}{\partial \{\partial_{\mu}\varphi\}} \delta \varphi + \frac{\partial \mathcal{L}}{\partial \{\partial_{\mu}\varphi^*\}} \delta \varphi^*$$

If  $\mathcal{L} = \partial^{\mu} \varphi^{*}(x) \partial_{\mu} \varphi(x) - M^{2} \varphi^{*}(x) \varphi(x)$ , we get

$$\frac{\partial \mathcal{L}}{\partial \{\partial_{\mu}\varphi\}} = \partial^{\mu}\varphi^{*} \quad \text{and} \quad \frac{\partial \mathcal{L}}{\partial \{\partial_{\mu}\varphi^{*}\}} = \partial^{\mu}\varphi$$

Now consider an infinitesimal gauge transformation, i.e.  $heta \ll 1$ 

$$\delta\varphi(x) = \varphi'(x) - \varphi(x) = (e^{-ig\theta} - 1)\varphi(x) \approx -ig\theta\varphi(x)$$
  
$$\delta\varphi^*(x) = \varphi'^*(x) - \varphi^*(x) = (e^{+ig\theta} - 1)\varphi^*(x) \approx +ig\theta\varphi^*(x)$$

Plugging in these values..

$$j^{\mu} = \partial^{\mu} \varphi^{*} [-ig\theta\varphi(x)] + \partial^{\mu} \varphi [+ig\theta\varphi^{*}(x)]$$
$$= -ig\theta [\partial^{\mu} \varphi^{*} \varphi(x) - \varphi^{*}(x) \partial^{\mu} \varphi]$$

Drop the  $\theta$  factor:

$$J^{\mu} = -ig[\partial^{\mu}\varphi^{*} \ \varphi(x) - \varphi^{*}(x) \ \partial^{\mu}\varphi] = -ig\varphi^{*}\overleftrightarrow{\partial}_{\mu}\varphi$$
  
scalar current

Nöther charge:

$$Q = \int d^3 \vec{x} \, j^0 = g \int d^3 \vec{x} \, (-i) [\partial^0 \varphi^* \, \varphi(x) - \, \varphi^*(x) \, \partial^0 \varphi]$$

This is nothing but the probability for a Klein-Gordon particle, i.e. gauge symmetry leads to conservation of probability...

Normalisation: 
$$\int d^3 \vec{x} (-i) [\partial_t \varphi^* \ \varphi(x) - \varphi^*(x) \ \partial_t \varphi] = 1$$
  
i.e.  $Q = g$  U(1) charge of  $\varphi(x)$ 

A global gauge transformation is not compatible with relativity



does not account for finite time of signal propagation

Replace it with a local U(1) gauge transformation:

$$\varphi(x) \rightarrow \varphi'(x) = e^{-ig\theta(x)}\varphi(x)$$

which also forms a U(1) group

(Set of global U(1) gauge transfns  $\subset$  set of local U(1) gauge transfns)

<u>Demand</u>: The action S should be invariant under this transformation, since it is physically meaningful Under this local U(1) g.t. the fields change to

$$\begin{split} \varphi(x) &\to \varphi'(x) = e^{-ig\theta(x)}\varphi(x) \\ \varphi^*(x) &\to \varphi'^*(x) = e^{+ig\theta(x)}\varphi^*(x) \end{split}$$

The Lagrangian changes to

 $\mathcal{L}' = \partial^{\mu} \varphi^{'*}(x) \partial_{\mu} \varphi^{\prime}(x) - M^{2} \varphi^{'*}(x) \varphi^{\prime}(x)$  $= \partial^{\mu} \left[ e^{+ig\theta(x)} \varphi^{*}(x) \right] \partial_{\mu} \left[ e^{-ig\theta(x)} \varphi(x) \right] - M^{2} \varphi^{*}(x) \varphi(x)$ 

 $= \mathcal{L} + ig\partial_{\mu}\theta \,\partial^{\mu}(\varphi^* - \varphi) - g^2(\varphi^*\varphi) \,\partial^{\mu}\theta \,\partial_{\mu}\theta$ 

The theory is no longer gauge invariant!!

This is not physically acceptable, because then we would be able to measure phases in quantum mechanics, which we cannot  $\Rightarrow$  paradox

Something must be missing...

Take the Lagrangian density

 $\mathcal{L} = \left[\partial^{\mu}\varphi(x)\right]^{*} \left[\partial_{\mu}\varphi(x)\right] - M^{2}\varphi^{*}(x)\varphi(x)$ 

and rewrite it as

 $\mathcal{L} = \left[\partial^{\mu}\varphi(x) + igA^{\mu}(x)\varphi(x)\right]^{*} \left[\partial_{\mu}\varphi(x) + igA_{\mu}(x)\varphi(x)\right] - M^{2}\varphi^{*}(x)\varphi(x)$ 

where  $A_{\mu}(x)$  is a gauge field introduced to get gauge invariance.



<u>Shorter notation</u>: write  $\partial_{\mu}\varphi + igA_{\mu}\varphi = (\partial_{\mu} + igA_{\mu})\varphi \equiv D_{\mu}\varphi$ 

The Lagrangian density becomes

$$\mathcal{L} = [D^{\mu}\varphi(x)]^* [D_{\mu}\varphi(x)] - M^2 \varphi^*(x)\varphi(x)$$

Under a local U(1) g.t., we have seen that

$$\varphi(x) \to \varphi'(x) = e^{-ig\theta(x)}\varphi(x)$$
$$D_{\mu}\varphi(x) \to D'_{\mu}\varphi'(x) = e^{-ig\theta(x)}D_{\mu}\varphi(x)$$

so that the Lagrangian density becomes trivially invariant.

The construction  $D_{\mu}\varphi$  transforms in the same way as the  $\varphi(x)$ , so we call it a <u>covariant derivative</u>.



Hermann Weyl (1885 – 1955) – pioneer of group theory in physics



Vladimir Fock (1898 – 1974) – pioneer of quantum field theory



Fritz London (1900 – 1954) – pioneer of quantum manybody systems

1918

1927

Electroweak Unification and the Standard Model : Lecture-1

Do we understand this  $A_{\mu}$  field?

Consider its Euler-Lagrange equation: 
$$\partial_{\mu} \left[ \frac{\partial \mathcal{L}}{\partial \{\partial_{\mu} A_{\nu}\}} \right] - \frac{\partial \mathcal{L}}{\partial A_{\nu}} = 0$$
  
 $gJ_{\nu} + g^2 \varphi^* \varphi A_{\nu} = 0 \implies A_{\nu} = \frac{J_{\nu}}{g\varphi^* \varphi} = \frac{1}{g} \frac{\varphi^* \overleftrightarrow{\partial}_{\mu} \varphi}{\varphi^* \varphi}$ 

 $\Rightarrow$  nonlinear Lagrangian... nonlinear wave equations... no quantum theory

Again, something must be missing....

i.e. there must be a term with  $\partial_{\mu}A_{\nu}$ 

This term must be both Lorentz-invariant and gauge-invariant

Under a local U(1) g.t., we know that 
$$A_{\nu} \rightarrow A_{\nu} + \partial_{\nu}\theta$$

Then,  $\partial_{\mu}A_{\nu} \rightarrow \partial_{\mu}A_{\nu} + \partial_{\mu}\partial_{\nu}\theta$ 

and  $\partial_{\nu}A_{\mu} \rightarrow \partial_{\nu}A_{\mu} + \partial_{\nu}\partial_{\mu}\theta$ 

 $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} \rightarrow \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} = F_{\mu\nu}$ 

field strength tensor

Lorentz-invariant construction:  $F_{\mu\nu}F^{\mu\nu}$ 

Full Lagrangian:

$$\mathcal{L} = (\partial^{\mu}\varphi)^{*} \partial_{\mu}\varphi - M^{2}\varphi^{*}\varphi + ig(\varphi^{*}\overleftrightarrow{\partial}_{\mu}\varphi)A^{\mu} + g^{2}\varphi^{*}\varphi A^{\mu}A_{\mu} - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$

The Euler-Lagrange equation becomes:

$$\partial_{\mu}F^{\mu\nu} = gJ^{\nu} - g^{2}\varphi^{*}\varphi A^{\nu}$$

For small g, this reduces to

$$\partial_{\mu}F^{\mu\nu} = gJ^{\nu}$$

i.e. identical with Maxwell's equations...

It follows that the  $A_{\mu}$  must be the electromagnetic field and g = qe.

The quantum mechanics of a complex scalar field has no physical meaning unless we couple it to an electromagnetic field...

electromagnetism  $\Leftrightarrow$  inability to measure phase of a wavefunction

The Lagrangian density

$$\mathcal{L} = i \, \overline{\psi} \, \gamma^{\mu} \partial_{\mu} \psi - m \, \overline{\psi} \psi$$

is manifestly invariant under a global U(1) gauge transformation

$$\psi(x) \to \psi'(x) = e^{-ie\theta} \psi(x)$$

where  $\theta$  is an arbitrary (real) constant and e is a (real) constant specific to the field...

Easy to show that the Nöther current corresponding to this symmetry is the Dirac current  $J^{\mu} = e \overline{\psi} \gamma^{\mu} \psi$  and the Nöther charge is just

$$Q = \int d^3 \vec{x} \ j^0 = e \int d^3 \vec{x} \ \bar{\psi} \gamma^0 \psi = e \int d^3 \vec{x} \ \psi^{\dagger} \psi = e$$

For local U(1) gauge invariance, replace  $\mathcal{L} = i \, \overline{\psi} \, \gamma^{\mu} \partial_{\mu} \psi - m \, \overline{\psi} \psi$  by

$$\mathcal{L} = i \,\overline{\psi} \,\gamma^{\mu} D_{\mu} \psi - m \,\overline{\psi} \psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

31

where, as before,  $D_{\mu} = \partial_{\mu} + ieA_{\mu}$  and  $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ .

We will also get Maxwells' equations:  $\partial_{\mu}F^{\mu\nu} = eJ^{\nu}$ 

Quantum Electrodynamics (QED)

Electroweak Unification and the Standard Model : Lecture-2

#### Once we have Maxwell's equations, we can write

# Choose the Lorentz gauge $\partial_{\mu}A^{\mu}=0$ and we recover $\Box A^{ u}=eJ^{ u}$

In static limit, this leads to Coulomb's law and a long-range interaction



#### Can the photon have a mass?

Then we would have a Klein-Gordon equation:  $\left(\Box + M_{\gamma}^{2}\right)A^{\nu} = eJ^{\nu}$ 

coming from a Maxwell equation:  $\partial_{\mu}F^{\mu\nu} + M_{\gamma}^2A^{\nu} = eJ^{\nu}$ 

If this is the Euler-Lagrange equation, the Lagrangian density must have an extra mass term

$$\mathcal{L}_M = \frac{1}{2} M_\gamma^2 A^\nu A_\nu$$

Under a gauge transformation,  $A_{\nu} \rightarrow A_{\nu} + \partial_{\nu}\theta$ , and it follows that

$$\mathcal{L}_M \to \frac{1}{2} M_{\gamma}^2 (A^{\nu} + \partial^{\nu} \theta) (A_{\nu} + \partial_{\nu} \theta) \neq \frac{1}{2} M_{\gamma}^2 A^{\nu} A_{\nu}$$

For gauge invariance, we must set  $M_{\gamma} = 0$ , i.e. the photon must be massless

#### gauge invariance $\Leftrightarrow$ long range interactions