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Natural units:

we shall use relativity + quantum mechanics: convenient to set

c=1 and h=1

Dimensions:

[c]=LT '=L=T
E=hw= [E]=[T"1]
E=mc?*?= [E]=M

iy

> L=T=M"'=I[E]"!

conventional to write everything in units of energy (GeV)

1 GeV'=0.1973 fm (1 femtometre = 10> m)

1 GeV*=0.3894 mb (1 millibarn = 10" cm?)
1 GeV'=0.6582x10% s
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Thanks to Feynman, we can express the results of RQFT in
terms of diagrams which are easy to understand physically.

Thus, we can get away, up to a certain point, without
learning RQFT.

What can elementary particles do?

« Scattering processes /

cross-section o

« Decay processes

decay width I @\
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What makes such processes happen?

Four fundamental interactions:

e gravitation F < Gym?*
e electromagnetism F x e?/Ame,
e strong (nuclear) interaction F & gSZ

e weak (nuclear) interaction F o« Gp

At high energies, electromagnetism and weak interactions
unify to form the electroweak interaction.
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Decay processes can be used to determine the nature of the
interaction.

A decaying state evolves with time as e I't/n

. . . . h
l.e. the (mean) lifetime is T = -

From quantum mechanics, it can be shown that I’ « g

where

r Gy  for gravitation
2

e

for electromagnetism
41,

g2 for strong interactions
\ G forweak interactions
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Thus, the lifetime of a process satisfies

h
T X —
g?
l.e. the stronger the interaction, the shorter the lifetime.

Interaction T P =cT

Strong interaction ~107%%s ~107Y cm
Electromagnetic interaction ~1071°s ~107°% cm
Weak interactions ~1077 s ~10 cm

Gravitational interaction ~10"%4s  ~107* cm

Only weakly-decaying particles will leave observable tracks
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Classification of particles according to interactions:

ELEMENTARY PARTICLES
|
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Some well-known particles:

CHARGED LEPTONS:

electron (¢ ), muon (1), tau (7))

NEUTRINOS:

electron-neutrino (v, ), muon neutrino (v, ), tau neutrino (v;)

MESONS:

pions (r*, %), kaons (K ', K9), tho (p*, p?), eta (n?), etc.

BARYONS:

proton (p 1), neutron (n?), Delta (A", A", A”), Lambda (A"),
Sigma (271, 2Y), cascade (57, £%), Omega-minus (27)

GAUGE BOSONS:

photon (y), W-boson (W), Z-boson (Z?), gluons (g)

Each has its own antiparticle:

ANTI-LEPTONS:

positron (e ™), anti-muon (u), anti-tau (71)

NEUTRINQOS:

electron-antineutrino (V, ). muon antieutrino (v, ). tau antineutrino (V;)

ANTI-MESONS:

pions (T, 1" ), Kaons (K, I?O), rho (p—, po), eta (no), etc.

ANTI-BARYONS:

antiproton (p~), antineutron (77"), Delta (A~, A, A?), Lambda (4?),
Sigma (27, 2Y), Cascade (£, "), Omega-plus (21)

GAUGE BOSONS:

photon (y), W-boson (W ™), Z-boson (Z°), gluons (g)
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Nother’s Theorem and conserved quantum numbers 10

Consider a system with a Lagrangian L = L(q4,q2, -, qn, 491, ]2, -, qn)
such that under a transformation ¢q; — q; +¢€n;, for all i, the
Lagrangian remains unchanged. We call this a symmetry of the system.

: dL.
It follows that, treating € as a parameter: -~ = 0

or, more explicitly,

n

Z ((’M N dL ) 0
SN TN =
i oq; "' 0q; "

Substituting the Euler-Lagrange equations
JL  d (aL)
dq; dt \og;
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11

or,

Thus we have proved Nother’s Theorem: to every symmetry of a
Lagrangian system there corresponds a conserved quantity. The
conserved quantity Q is called the Nother charge.
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Typical conserved quantities and the corresponding symmetries:

12
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13
Lagrangian Field Theory

Let 1 (x) be a field defined on a Minkowski space with coordinates x

i.e. for every value of x there is a value of 1 (x).

1) Ex) ) Ex’)

X x'

If we treat 1)(x) at every point x as a generalised coordinate, then

clearly this is a system with infinite number of degrees of freedom.

In Lagrangian dynamics, this will be described by a Lagrangian L

L= J. d3x L(y(x), 0, (x))

where L is the Lagrangian density and the integral is over all space.

The action integral will be given by

S = J. dt L = f d*x L(I/J(x),ﬁ g()(x))
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The dynamics of this field will be driven by Hamilton’s Principle, viz.

if P(x) - YPx)+oyY(x) then 65S=0
This will lead to Euler-Lagrange equations
, \ 0L
9, |—
d{dﬂlp(x)}

If there are many fields ¥, (x), Y, (x), ..., P, (x) the Lagrangian is

L 0
N P(x)

L = J. d*x L (1/)1(36), ey P (%), 0,1 (X) e, 90, (x))

and there are n sets of Euler-Lagrange equations...

The action integral will be given by

S = J. dt L = f d*x L (I/Jl(x), o, (x), 0,04 (x) ...,aﬂy{)n(x))

14
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Nature of field

Euler-Lagrange eqs.  Lagrangian density

15
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Nother’'s Theorem (again!)

If, under a transformation ; (x) — Y;(x) + 6y;(x), we have 6L = 0,

this will be called a symmetry of the system.
For an infinitesimal change, it follows that

oL = 5{6 l.br}+

0L
0{09,;} awl

As before, substitute the Euler- Lagrange equations
0L
oy d{ 0 w }

to get

5L=Za{§ibr} Wi} + 0, [d{d 0 }] Wi = 2 \d{a Lb} ‘

< 5L =0, ) ey WA
= ). —
1 i ﬁ{@ﬁlﬂg} i ]

d1; is called the Nother current.

. 9L
n— v,
where | Z‘a{aﬂwi}

16
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17
Now, for a symmetry, 6L =0=0,j" =0

i.e. we get an equation of continuity for the Nother current.

Written out explicitly, the equation of continuity assumes the usual

form, i.e.

—_—

0" =0 = 0,j°4+V.j=0

Now, integrating over all space,
ie. d; [d®x jO=0

We define Q = [d3x j® as the Néther charge

Emmy N6ther (1882 — 1935) proved her famous theorem in 1915. She was
one of the first women to hold an official professorship in a European
University — at Gottingen. She did pioneering work on invariants, abstract
algebra and topology. In 1933 she moved to the USA, where she died of
cancer after two years.
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Gauge Invariance of a Complex Scalar Field 18

The Lagrangian density
L= 09" (x)0,p(x) — M*¢" (x)p(x)
is manifestly invariant under a global gauge transformation

P(x) = @ (x) =e 9% p(x)

where 6 is an arbitrary (real) constant and g is a (real) constant specific
to the field...

Also: @(x) = [491(35) +ip,(x)] and @"(x) = [@1(1') Lo ()]

p'1(x) = @,(x)cosgh — @,(x)singo } complex

03 (x) = @, (x) sin g6 + @,(x) cos gb rotation
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This set of transformations forms an Abelian (commutative) group

Proof:
Group product = successive transformations @(x) = e 9%2¢79% p(x)
1. closure . e 19020-1901 — o—ig(62+61)

2. associativity : e 993 (e71992¢71991) = (¢71903 719021961
— o 19(63+62+61)

3. identity :0=0;¢e'=1

4. inverse : eT99e7198 = 20 = 1

5. commutativity: e 99271961 = 7190171962 — o—ig(01402)

This set of phases e 99 forms the group of unitary 1x1 matrices: U(1)

These are global U(1) gauge transformations

19
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20
Nother current corresponding to the global U(1) gauge symmetry:

= 0L 50 4+ 0L 50
{0, ¢} {0, 9"}

*

f L=0""(x)d,@(x) — M*@*(x)p(x), we get

0t = 0l " and 0t = d" @
09, ¢} 010, ¢"|

Now consider an infinitesimal gauge transformation, i.e. 6 << 1
5p() =9 (1) —p() =(e7° —1)p() = —ighp(x)
5o (x) = @ (x) — 9" (x) = (99 = 1)g"(x) = +ighep"(x)

Plugging in these values..

Electroweak Unification and the Standard Model : Lecture-1



21
JE =0t [—igbe(x)] + 0" p[+igbe~(x)]

= —igf|ote™ p(x) — ¢ (x) "¢ |
Drop the & factor:
J* = —ig[ote" o(x) — ¢ (x) O ] =—igp d,¢

scalar current

Nother charge:
Q=[50 =g [ @5 DI°0" 900 - ¢"() 0]
This is nothing but the probability for a Klein-Gordon particle,
i.e. gauge symmetry leads to conservation of probability...
Normalisation: [ d>x (—=i)[d¢ ¢ @(x) — ¢ (x) dopl=1
i.e. Q=g U(1) charge of ¢(x)
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22
A global gauge transformation is not compatible with relativity

e :ig T (x) e _jg TP (x"

X x!

does not account for finite time of signal propagation

Replace it with a local U(1) gauge transformation:

p() = ¢ (1) = e D (x)
which also forms a U(1) group

(Set of global U(1) gauge transfns C set of local U(1) gauge transfns)

Demand: The action S should be invariant under this transformation,

since it is physically meaningful
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Under this local U(1) g.t. the fields change to
P(x) =@ (x) = e Dp(x)
@' (x) = " (x) = e My (x)

The Lagrangian changes to
L= 0t " (2)0,¢'(x) — M?¢ " ()" (x)

= 0V [e*199 " (x)]d, e D (x)| = M2 " (x)p(x)
= L+igd,00"p" — @)—g°(p~p) 0"6 9,6

The theory is no longer gauge invariant!!

This is not physically acceptable, because then we would be able to
measure phases in quantum mechanics, which we cannot = paradox

Something must be missing...

23
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Take the Lagrangian density

L= [ﬁﬁ‘qo(x)]*[ aﬂ@(JC)] — M?2@" (x)p(x)
and rewrite it as

L=[0Fp(x) +igAt(x)p)]| d,p(x) +1igA, )| = M2 (x)p(x)

where A, (x) is a gauge field introduced to get gauge invariance.

24
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Shorter notation: write d, 0 +1gA,Q = (qu + igAH)(p =D, 25

The Lagrangian density becomes
L= [DFpO)"[ Dyp(0)]| = M@ () (x)

Under a local U(1) g.t., we have seen that

p(x) > @ (x) = e 9D gp(x)

Dy(x) = D'y (x) = e 9™ D, p(x)
so that the Lagrangian density becomes trivially invariant.

The construction D, ¢ transforms in the same way as the ¢(x), so we

call it a covariant derivative.

Hermann Weyl Vladimir Fock Fritz London

(1885 — 1955) P 4 (1898 — 1974) (1900 — 1954)

— pioneer of group ~ —pioneer of — pioneer of

theory in physics quantum field quantum many-
theory body systems

1918 1927
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Werite out the Lagrangian density in full... 26

Do we understand this 4, field?

dL
Consider its Euler-Lagrange equation: 8 [a{a Al "aa 0
_ Jy 190,
I +9°9pA, =0 = A =——=———
v Tt g @ @ Ay VI 900 g 00

—> nonlinear Lagrangian... nonlinear wave equations... no quantum theory

Again, something must be missing....
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The A, fields must have some dynamics,

i.e. there must be a term with 0,4,

This term must be both Lorentz-invariant and gauge-invariant

Under a local U(1) g.t., we know that 4, = A, + 0,6
Then, Ay - 9,A, +0,0,6
and dyA, - 0,A, +0,0,6

Fy = 0,4,—-0,A, - 0,A,—0,A, = F, field strength tensor

Lorentz-invariant construction: F,, F*¥

27
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Full Lagrangian:

L=(0"p) 0,0 —M*@ 0 +ig(9"u0)A" + g>@ @ A" A, — T Fy FM
The Euler-Lagrange equation becomes:
0, F" =g]" —g*¢ A
For small g, this reduces to
0,F* = gJ”

i.e. identical with Maxwell’s equations...

It follows that the A, must be the electromagnetic field and g = ge.

The quantum mechanics of a complex scalar field has no physical meaning

unless we couple it to an electromagnetic field...

electromagnetism < inability to measure phase of a wavefunction

28
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Gauge Invariance of a Dirac Field

The Lagrangian density
L=1 Jy#aﬂlp —myp
is manifestly invariant under a global U(1) gauge transformation
P(x) =P (x) = e “Py(x)

where 6 is an arbitrary (real) constant and ¢ is a (real) constant specific
to the field...

Easy to show that the Nother current corresponding to this symmetry

is the Dirac current J# = e 1 y#1) and the Nother charge is just

Q = J‘d%? j° =eJ‘d35£ Py :efdg’fgb"'tj) =e

30
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— _ 31
For local U(1) gauge invariance, replace L =11 }/“6”1)[) —myyp by

L=iYpy'Dyp—myyp — %EN FH

where, as before, D, = d, + ieA, and F,, = d,A, —0d,4,.

We will also get Maxwells’ equations: d, F*"" = e]"

Quantum Electrodynamics (QED)
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Once we have Maxwell’s equations, we can write

Choose the Lorentz gauge d, A" = 0 and we recover

In static limit, this leads to Coulomb’s law and a long-range interaction

32
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Can the photon have a mass? 33

Then we would have a Klein-Gordon equation: (D + M}Z,) A =e]"

coming from a Maxwell equation: d, F*"" + MEA” = eV

If this is the Euler-Lagrange equation, the Lagrangian density must have
an extra mass term

Ly =sMZAYA,
Under a gauge transformation, A, = A, + 0,6, and it follows that
Ly = ME(AY + 0V0)(4, + 0,8) = -MZA A,

For gauge invariance, we must set M, = 0, i.e. the photon must be
massless

gauge invariance < long range interactions
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