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SU(2) Gauge Theory

The full Lagrangian for this is
L= (dH (D)'f'aﬁ_(b -M*OTD + ig[(@” iD)"’&Fq) — OTAH 0y (I)]
+g*®TA*A, O — ITr|F,, F* |

where
A = ATTy + AT, + A5 T,
F¥ = 0,A, — 0,A, +ig|A,,A,|
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Mass generation:

To break this symmetry spontaneously, we now replace the scalar mass

term by a potential
-M?PTd - —V(D)
V(®) = —M2D D + A(0T D)

i.e. this is a theory with n massless scalars and some self-interactions

As before, if we define a real field
T ()P (x) = n(x)*
then we can write the potential as
V() = -M*n* + An*
with a local maximum atn = 0 ; local minima atn = v/V2 = \/MZ—/ZA
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These local minima correspond to

MZ

[IJf(I) e 2 = —

T =72

Recall that

Q1+iQ,

_(PA\ V2
¢ = ((PB) | @3tips

V2

sothat ®T® = |pa|? + |@p|? = 29T + @5 + @3 + ¢5)
l.e.

MZ
1+ Q2 + 95+ Qi = —

Equation of a 4-sphere — only one of these points can be the vacuum

Hidden Symmetry!!
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Vacuum manifold in a U(1) gauge theory is a circle

e The scalar field is
_ ¢ + 1,
V2

e Traditional to orient the axes in
the -space such that only the
(1 has a vacuum expectation
value

Po ={p1) =V

(p) ==

P2

P2

P1

P1
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Vacuum manifold in a SU(2) gauge theory is a four-sphere

e The scalar field is
Q1+iQ2
V2
P3Hipy

V2

b =

e Traditional to orient the axes in
the ¢-space such that only the
@3 has a vacuum expectation P4

value
_ (p3)=v P1
i.e.
(D) = (g) (The ¢, axis is not shown...)
V2

e Now shift ® = (D) + @’
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Seagull term:

Lsg = g*PTAYA, @ — g*((P) + P)TA*A, () + )

= g*{(P)TAFA (D) + -
We thus get a mass term for the gauge bosons, viz.
Linass = G{PYTAFA, (D) = g* (A (P)T(A,(P))

Expand this...
1
A\l# — A#l']rl + Aﬁz']rz + A#3']T3 — E(A‘ulo-l + AJHZG-Z + A‘uggg)
. 0 +
Ay Ay — LAy W W”
2 2 _| 2 2
hatite A |Tw o wg
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0
W oy e,
2 W2 2 M
Ay(q»: . 0 v = v
M/;i M/;i —_— - VVFU
= 2 ) W2 2V2
and
- » ~
(A“((I)))f — —WH ——WHO
2 2\2
N~ J
Thus,
2.,2 2.2
N gev . gTv
s = g 800! (4 00) = (S e+ S

= MEV%JrWM— + %M‘DZVM”;PWHU

where My, = %gv
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In a hidden U(1) gauge theory: @ = (@) + (Pf 98

p1t+ip; v n p'1+ip'ys  (p'1+v)+ip's
V2 V2 N V2

When substituted into the potential, this leads to a correct-sign mass

for ¢'; (massive scalar) and keeps @', massless (Goldstone boson)

In a hidden SU(2) gauge theory: @ = (@) + @’

Q1+iQ7 0 p'1+ip' @'1+ig’;
V2 R n V2 _ V2

P3+ips v @'3+ip's | | (@'3+v)+ip'y
V2 V2 V2 V2

When substituted into the potential, this leads to a correct-sign mass

for ¢'; (massive scalar) and keeps ¢’; ; , massless (Goldstone bosons)

We now have to worry about three Goldstone bosons
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The Higgs mechanism works here too... 7

0

U(x)) (polar form)

Exactly as before: parametrise ®(x) = ei€()T (

Consider the unbroken (i.e. gauge invariant) Lagrangian density
1 T
L = —Tr[F, F"] + (D*®) D, - V(D)
t to)
where V() = —-M*®'® + 2 (0')

At this level, we are free to make any gauge choice we wish...

Make a gauge transformation

() = UWD() = e DTP(x) = el DEIT (| (Ox))
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We might as well choose a special gauge, since the gauge symmetry is

going to be broken anyway...

Choose the three gauge functions 8(x) such that

96(x) —&(x) =0
This is called the unitary gauge.

In this gauge, ®(x) = @, (x) = ( and the Lagrangian becomes

0
n(x))
L= —%TF[IFWIF‘W] + (]ID”(IJ?},)TI[DHIIJH —V(n)
where V(n) = —M?n? + in*

The ground state is still at v/v/2 so we must shift

v

n="7+n
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This will lead to 0

These three degrees of freedom reappear in the longitudinal
polarisations of the three W™, W~ and W°.
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The gauge field matrix expands to

Apt — A]ul'ﬂ'l +AF2T2 +A#3T3

Ay =W+ WO)Ty + = (W =W )T, + WP T,
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Inclusion of fermions 103

If fermions are to interact with the W, W~ and W bosons, they must

transform as doublets under SU(2)y, just like the scalar doublet ®(x)

Consider a fermion doublet (we could do a similar thing for SU(N) ...)

(0

where the 1, and Y5 are two mass-degenerate Dirac fermions.

Construct the ‘free’ Lagrangian density
L=iPy"0,¥Y —mPY
where ¥ = (1, 1p).

Sum of two free Dirac fermion Lagrangian densities, with equal masses.
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Now, under a global SU(2),, gauge transformation, if 104

W(x) - ¥ (x) = U¥(x)
then
P(x) - P (x) = P(x)UT

It follows that the Lagrangian density
L=iPyt0, ¥ —mPY
must be invariant under global SU(2),, gauge transformations.

As before, we try to upgrade this to a local SU(2),, gauge invariance, by
writing

L= iPy"D,¥ — mPY — Tr[F,, F" ]

where D, =109, + igA, (x) as before. Invariance is now guaranteed.
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Expand the covariant derivative and get the full Lagrangian density 105

L=iP9,¥ —mPY —éTr[IF‘W | — gPyrA, Y

free fermion ‘free’ gauge  interaction term

Expand the interaction term...

Lint = _ngI]ﬂu. A‘u. ¥
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Werite the currents explicitly:

o jF = PyrT W = Pyr — (’JI‘1+I’II‘2)‘P

- L&, wg)w(g o) (b2) = v

o jt = PyrT W = PyH _i(Tl — iT,)W¥
0 0 lpg 1 -
u — L Davh
=5 P (] ) (32) =5 Por v
® J[J;i = ITJ']/‘HTglP

= %(1!_&4 e (é _01) (51‘;) = %(@AV”U’A — YY" ip)
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Line = —gj% W, — gj* W, — gjs W0

This leads to vertices
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Comparing with the IVB hypothesis for the T/I/L , we should be able to
identify

Ya _ (P Ya (Ve Wa _ (Vu
(UJB) N (’n) (TJJB) - (e) (TJJB) - (H)
Q. Can we identify the I/I/LU with the photon (forgetting the mass)?

If the I/Lif—r are charged, we will have, under U(1).,,

%—I— _ M/;,!—i_ _ E—leﬁ W+ M/;I_ — W — —H,E'H W—

Now, if the term Y, y* g %+ is to remain invariant, we must assign

charges g4€ and gge to the A and B, s.t. the term transforms as
JJAV'”T!JB M/L+ e —ief +iqgael —iqgel w V”UJB W+

To keep the Lagrangian neutral, we require gy —gp = 1

Electroweak Unification and the Standard Model : Lecture-4



109
But if we look at the WO vertices, and consider them to be QED

vertices, we must identify

J__ e and I e
> qa > 4B
8. g4 = —(qp.
Now solve the equations: g4 —gg = 1 and g4 = —qp ...
result is
1
da = —49B = 3

Two alternatives:

e A and B cannot be the Fermi-IVB particles (defeats whole effort...)

. WO cannot be the photon... (already hinted by the mass)
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FElectroweak unification

Why not just include the U(1)., group as a direct product with the
SU(2)w group?

The transformation matrix on a fermion of charge ge will then look like
U = e—igg.ﬁ:—iqe 6'T
where T is the generator of U(1)., and the direct product means that

[T, T,]=0 Va

The gauge field matrix should expand to

gA, = gW T, + gW, T_ + gW;? T3 + qeA, T

and give us interaction terms as before...
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i.e., to the interaction terms with the W boson we must now add

interaction terms with the photon:

Ling = — %@AY‘”WB W, — j—glﬁ.e]/# Ya W,

Working back, we can write this as

9 o , 9 w+
L Awrege,  Ewr o
Ling = (lpfl T){JB)V g _ g 0 Y
5 % -3 M/;i + QBeAp B

. — ' o da 0
= —W(gAr . T+eA,T)¥ where T = (0 QB)

Electroweak Unification and the Standard Model : Lecture-4



This generator of U(1),,, can be rewritten

" _ (44 O)ZQA+QB da — 4B
T (0 05 > 1+ > T

If we rememberthat 94 —gp = 1 , then

: 1
T =(2qg,+ 1)1 + ETg

Paradox!

[T, T,]#0 for a=1,2

Glashow (1961) :

112

We cannot treat weak interactions and electromagnetism as separate

(direct product) gauge theories = electroweak unification
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Glashow (1961) : 113

We cannot treat weak interactions and electromagnetism as separate

(direct product) gauge theories = electroweak unification

SU(2)wxU(1)y model
Introduce a new U(1), which is different from U(1).,, and exists as a

direct product with the SU(2)w...

The gauge transformation matrix will become
U= e—i90.T+ig 6'T
where T’ = %]1 , Which, by construction, will commute with all the T
We now expand the gauge field matrix as
gA, = gW Ty + gW T_+ gW Tz — g'B, T

B, is a new gauge field and y is a new quantum number which is

clearly same for both the A and B component of the fermion doublet.
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We now construct the gauge-fermion interaction term as before

Line = —gPyFA, W

= — Pyt (gW, Ty + gW, T_+ gW. T3 — g'B, T ¥

Expanding as before

g o _9Y 9w+
T Nop W 2 B, V2 W Ya
mt - (lpﬂ 'J”B)y !
I w- _Idwo_92p Yp
NF H 2 U 2 U
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Glashow (1961): for some reason, the VI/LD and B, mix, i.e. the physical

states are orthonormal combinations (demanded by gauge kinetic
terms) of the VI/LU and B, ...

WO\ (€ TS\ /Z B .
— 4 c=cosw, S=Ssinw
B, S ¢ U

In terms of this, the neutral current terms come out to be

an = —%V“lﬂﬁ ( WU g }’ ) + LEB}/HT)[JB ( WU + B )
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If we now wish to identify A, with the photon, we require to set
1 r 1 r
—5(gs+9yc) = qae 5(gs —g'yc) = qpe

Solving for g and g’ we get

—gs = (qa — qp)e —gfyff = (qa + qp)e

Recall that g, — qp = 1. It follows that

r Y
e =—gs e=-—gc
7 I da + 93
Choose —y = g4 + qg. Then
e =—gsinw g’=gtanw

Note that w is some arbitrary angle... it must be nonzero, else e = 0

116

Electroweak Unification and the Standard Model : Lecture-4



117

We can also obtain

1 1
qa =5+ qp = —5+

o<
(NN

1 : :
Now, these iE are precisely the eigenvalues of the T; operator

l.e. we can write a general relation
8 Sheldon L.

Glashow
q =13 +%

Looks exactly like the Gell-Mann-Nishijima relation...

Call t3 the weak isospin and y the weak hypercharge

This gauge theory works pretty well and can give the correct couplings
of all the gauge bosons... up to the angle w, which is not determined by

the fermion sector...
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Determination of w : (Salam 1966-67, Weinberg 1967) 118

Back to the gauge boson mass term...

Lmass = gZ(&y“D))'f' (Ay<q)>) = (g&ﬂ((]f)))ﬂ' (gﬂ%(@))

For the Glashow theory, we must include the U(1), field in the gauge

field matrix, i.e.

gA, = gW, T, + gW, T_+ gW? T3 — g'B, T

9 .0 ‘9'!} g

EM{*’* _TB# _ZWEFLI \
I w- _I o9t
NG W, > W, > Bﬁ/

where Y is the hypercharge of the @ field.
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Thus, 119

g 0 _9Y 9 0
ga oy =2 " T2 a
: I w- _9g WU_ﬂB 2
V2 OB 2 U 2 H Ny
gv
_%(9 W' +gYB,)
and
-~ TN
t — Lyer—- IV po "'vou
(gAr (@)t = W -5 (g WH + g YBY)
S -

Multiplying these

7 2 7 2 ' !
Lass = (&) WirW!=+(35%) (W™ +g'YB")(g W+ g'YB,)
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Consider only the neutral bosons:
(gWH +g'YB) (g W, + g'YB,)
= g? WO WP + gg'Y WHOB, + gg' YB* W0 + (g Y)?B*B,

One cannot have mass terms of the form I/I/'J“D,B’PL and B* Wﬁo in a viable

field theory, since our starting point is always a theory with free fields.

Thus, it is essential to transform to orthogonal states

M/;LO B C S Z,u B L
- | 4 C=cosw, S =Ssinw
By S c U

and choose w to cancel out cross terms...
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Rewrite the neutral boson mass terms as

(gWre + g'YB*)(g W' + g YB,)
= g? WO WL + gg'Y WHOB, + gg' YB* W, + (g'Y)?BHB,

The diagonalising matrix will be

(COS(U Sin w )
— Sin w cOS

where

'Y
fanw = — g_

g
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How to determine Y ?

Werite out the interaction terms for the gauge bosons with the scalar
doublet. One finds that once again, to match the couplings to the

charges of the W bosons, we get the Gell-Mann-Nishijima relation, i.e.

Y
q—tg‘l'E

Now, the lower component @p develops a vacuum expectation value,
so it must be neutral, i.e.

1 Y
0——E+E — Y =1

It follows that Weinberg angle

I

—tanw =g—=tan9w
g
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Eigenvalues of the mass matrix:

(92 99’)
99" 9°
Determinant =0 ; trace = g° + 9;2} l.e.

MA:'O

Steven Weinberg

and

!

Mz =2 (L)z (> + g% = (2)2 (1 ;2 ) = M{ (1 + tan® 6y)

22 2 e
= M3 sec? Oy,
M
— MZ — W

cos By,
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Determination of parameters:

E?z 1 M MW

—_—= ) — —

41t 137 2 cos B

e = gsin By, gf=gtanf9w
Experimental measurements show that ‘ ' ‘

My, = 80.4GeV  and My = 91.2GeV  CarloRubbia
It follows that cos 6y, = My, /M, = 0.8816 = 6y, =~ 28°.17

We can now calculate: e = +vV4dmra = 0.303 a ~ 0.0073
g=e/sinfy ~0.642  ayw ~0.0328
g =gtanf, = 0.344 a,, ~ 0.0094
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