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The SU(2)wxU(1), gauge theory produces vector currents of the form

Lint = %T,EAV#UJB%JF + H.c.
+eqa Pav*iPal,
+eqp Yy A,

t . -
- ( 2% — g, sin? BW) Py Paz,

cos By

t . -
+—2 ( =% — qp sin’ QW) YY" PpZ,

cos By

We know from the experiment of Goldhaber et al that the right handed

charged current term does not couple to the W boson...

We must keep both chiralities of the fermions A and B, but couple
them in such a way that the W couples only to the left-chiral

components...
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e |f the left-chiral fields Y/4; and 5, couple to the W boson, they

must belong to a doublet of weak isospin, i.e. they must have
t="%:

e |f the right-chiral fields 1), and 15 do not couple to the W boson,
they must be singlets of weak isospin, i.e. they must havet = 0.

The hypercharges must be assigned to match with the Gell-Mann-

Nishijima relation g; = t3; +%, thus

particle| A, B, A Br
q qda 4B qda 4B
t3 %! -1 0 0
Yy |29a—1|2qp +1| 2q4 2qp
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Note that g4 — gg = 1 implies that

yBL) =2qp+1=2(qu - D +1=2q,-1= y(AL) =y,
i.e. the left-handed doublet has a common hypercharge. In terms of

this, we can write
y(Ar) =y, +1
y(Br) =y, — 1

All the interaction terms written above are now invariant under the
gauge symmetries SU(2)xU(1), as well as U(1).,, when the symmetry

is unbroken.

However, if we try to write mass terms for the fermions, i.e.

Ly = muPathy + mpPpPp
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which can be written in terms of chiral components as

Ly = My PaParp + Mg + MpPprPpr + MmpPpPpp

These terms are not gauge invariant, e.g. for the first term 14, 14 We

have
ts(WarWar) = t3(Par) + t3(Pag) = =%+ 0 = %
Y(WParhar) =YWPar) + y(@Pag) = —2q, +1+2q, = 1

by referring to the table. This is not invariant under SU(2),, or U(1),.

particle| A, B, A Br
q qda dB qda dB
t3 Yo -1 0 0
Yy |294a—1|2qp +1| 2q4 2qp
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Thus, the only way to retain both gauge invariance and maximal parity

violationistosetmy, = mp =0

l.e. in the phase with electroweak symmetry unbroken, all fermions

must be massless, irrespective of their electric charge.
But fermions have masses!

m, = 511 keV m, =105 MeV ...

Since fermion masses break the gauge symmetry, the solution must
come from spontaneous symmetry-breaking.

In addition to the gauge interactions, the fermions will also interact
with the scalar doublet.

These are called Yukawa interactions.
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Typical Yukawa interaction: write Y4, = A, Yp =B

Ly = fp P, @ By + H.c.

Ap pF
w= () »= (7o)
L BL (PU

After symmetry-breaking : ® = (®) + @’

where

Ly = fp P; ((@)+ @) Bp + H.c.

= fp U, (®)Br + fy ¥;® Bp + H.c.

Ty

mass term/!
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Written out in full

0

Lmass = fB (fﬁTL EL) (i) BR + H.c.
V2

where
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What about the A fermion?

Construct the charge-conjugated scalar doublet

= = (%, D(0)=(%)

where
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Now, write the Yukawa term as
Lyg = 1P, D Ap + f P, ® By + H.c.
Note that the hypercharge assignments match

y(®) = —y(@) y(Ag) = y(Bg) + 2y(®)

and so this term is also gauge invariant.

For the A term, after symmetry breaking

fA ITIL&)AR + H.c.— ﬁq ITIL((&)) + &)I)AR + H.c.
= £, P (P)Ap + 1 P, P Ap +H.c.

~

mass term!
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Written out in full

v

Lfillass — fA (IZIL EL) (\/_E) Ar + H.c.
0

- f—

— A\/E

fav  _ _
:5 (ALAR +ARAL)

= my AA

ALAH + H.c.

where

Jav
V2

my =
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Given the fermion content of the Standard Model —

For one generation,i.e. (Ve €) (u d)

Lyw = fo LiPeg + ﬁuzL fq QP dg +£,Q,Pug +H.c.

where

b= () & = (4)

The masses become

) NG,
_ fav _ fuv Abdus Salam
SN T

The vy is a particle without any gauge charge, i.e.t; =0,y =0,g =0
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Given the fermion content of the Standard Model —

For one generation,i.e. (Ve €) (u d)

Lyae = fo LD eg +f; Q. ®dg + £,0,®up + H.c.

where
b= (e;) 2= (g;)

The masses become

me=):j; m, = 0
m :ﬁf_'v m :fuv
T2 Y2

The vy is a particle without any gauge charge, i.e.t; =0,y =0,g =0
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Flavour mixing
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There are three generations of fermions
W1 = Ve Vo =V V3 = Vz 1
Leptons LL_(Q]_:E?) (32:4“) (83:1,) 1_5
(U =u U, =¢ Us =1 1
Quarks Q1 = (g, = g) (d: = 5) (d3 = b) I=3

L‘%ﬂ{ _ (1) L(l)fb (1) f(l) (1}¢, d(l) +ff”Q£U¢ u(l} T He

1 A
1@

2 2 2 2 2 2 2) 7 (2) x 2
Yuk — E’()L( )(b ()+f()Q,£ )q)dlgi’)_l_ﬁt( )Q}E )¢u|;g)+H-C-

| v

d(g) + fu(%)Qf)d:’ u(‘” + H.c.

3 -(3) 7(3 3 3
Lo = 0 L0 e + £ Q)

Electroweak Unification and the Standard Model : Lecture-5



With all possible mixings: 137

Lo = Z FD IO o0 4 ) 5O g0 4 (D pOF D 4y .
i,j=1

After symmetry-breaking

0 _~ _~ 1%
D - P + d - P +(—2 0)
3
Lo, = Z D () a0qy + 70y )
i,j=1
+ H.c.

Fermion mass matrices

Electroweak Unification and the Standard Model : Lecture-5



Consider the d—type quarks 138

@ Z M 3, Pd9 + He. =D M;Dg +H.c.

II]EISS

where

DL — (dL §L bL) DR = (SR)
bg

Now as in the case of gauge bosons, we cannot have bilinears like, e.g.
d;sp or b;dp and so we must diagonalise the mass matrix M, i.e.

Dy — T)L = Wf@L
Dg — f)R = WﬁDH

If Ml; is Hermitian, then Wf = V%, but in general they are different
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so that 139
L9 =D, M,Dy + H.c.
=D, (VITv{ )M, (VE'VE)Dg + H.c.
= D, (ViM Vi De + H.c.
We can always choose

_ my 0 0
VIM, VI = MJ?® = ( 0 mg O )
0 0 mp

so that
L9 =DM Dy + H.c.
= mdc?LdR + mS§LSR + mbEng + H. c.

= mydd + m.5s + mybb
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For the u-type quarks we will similarly have 140

LW = z M) 7, Oy L H, e = UM, Uy + H.c.
i,j=1
UR
where U, =@, ¢ &) Up = (CR)
tr

Once again, we define U; — U; = V¥U;  Up - Up = ViU,

such that
| m, 0 O
veM, Vi = MO = ( 0 m., 0 )

u
0 0 my

and this leads to
L™ = UM Up + H.c.= m,Gu + m.Cc + m,Et

I11ass
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Similarly, for the charged leptons, we will get 141

Hl dss

(E’) ZM(J)—(I)EU)+HC_£LM Epr + H.c.

1, =1
€R
where o= i 7) Er = (HR)
TR
Once again, we define & — &, = V& Ep = Ep = V% Ep
such that
m, 0 0
ViM VT =M, = 0 m, 0
0 0 m;,

L@ =& M E, + Hoe.=m,ée + m, fin + m, Tt

mass L*"e
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Now let us consider the c.c. interactions of the quarks 142

L{EE) -9 u, y* D, W'+Hec

2\/_
— p(yat +
2\/_ (U vy )y (Vi D) it + H.c.
-9 q, (v viD, Wt + B,
2\/2 LY ( LYL ) L% u
-9 ’L?L y* K D, W' +H.c
2\2

where K = wwf"‘ IS @ unitary mixing matrix (not diagonal!)

Cabibbo-Kobayashi-Maskawa (CKM) matrix
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What about neutral and e.m. currents? They have the form

‘El(l{é) = Uy u, Z, D D,y Dy Zy,

(ﬁLWE)Vﬂ(VE-l-ﬂL) Zy, D (ﬁwa)y# (Vf-l-f),a)zp_

— ﬂL}/‘uﬁL Z;'J @ EL}/H@LZM
I.e. no flavour-changing neutral currents (FCNC)

Similar for the e.m. current

Hence, flavour changing is seen only in c.c. interactions.

g (= 1 = .
L{EE) — _\/— (uL Cr, tL) 48 Kia Kus Ky dL %++ H. c.
N2 ch KLTS Kﬂb §L

Kia Kis Ko/ \b,
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Observed pattern of masses and mixings
m, 0 0 (0.0005 0

0
0 m 0 |= 0 0.1 0)
0 0 1.77

0 0 m,
( 0 m, O ) =( 0 0.093 0

m, 0 0 0.005 0 0
0 m. 0 |= 0 1.3 0 )
0 0 m; 0 0 1723

Kual [Kus|l [Kup (0.9745 0.2245 0.0004)

0.2244 0.9736 0.0421
0.0089 0.0413 0.9991

Cries out for an explanation!
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What about leptons? The lepton c.c. terms are

(e) Yy = _
L E yH
2\/_ :

(SL‘W) yh N, W+ He

N, W+ H.c

2\/_
g a
=— & yH(VSN;,) W1+ H.c
02 LR TR
-9 gyt N, W," + H.c.
2+/2

where N; = Vi, .

Thus there is no mixing in the lepton sector. The cause of this is that
neutrinos are massless.
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Mass matrices are

= W T T rTTET oo rTTTy T
proportional to £> 1 ATLAS and cms ;
. ¥ : ]
Yukawa coupling = | LHC Run 1 :
- _

matrices...

i Yo

Diagonalisation of
the one leads to

¢ ATLAS+CMS
------- SM Higgs boson

. . . 10_3_ -
diagonalisation of ; M, €] f §
v | |95%CL 1
m =—f 107 T R R
fu,d fu,d 1
V2 10° 1 10 10°

Particle mass [GeV]

Plot of mass versus coupling should be a straight line...

Electroweak Unification and the Standard Model : Lecture-5



Summary of Standard Model e
* Nature at the sub-nuclear scale seems to prefer local
gauge symmetries, leading to fundamental interactions

* These are of non-Abelian nature, involving multiple fields
with degenerate masses

* The electroweak symmetry is spontaneously broken — or
hidden — and this corresponds to a phase transition which
happened in the early Universe

* The phase transition was driven by a scalar field, which is
the Higgs boson and it has been found

* All particles acquired their (rest) masses from this phase
transition, for this need Yukawa and self-interaction forces

* The Standard Model is complete and (almost) all the
parameters are measured. Only issue is the RH neutrino.
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The Seven Great Questions 149

@ 5. Strong CP problem
\ ? |

\.J ® 6. Vacuum Stability

Dt

clueless 7. Hierarchy Problgm

1. Dark matter unexpected @@
N

2. Dark energy 3. Baryogenesis

4. Neutrino Mass embarrassing
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The Seven Great Questions 149

‘ 5. Strong CP problem
SN

® (@\ 6. Vacuum Stability
cIu;Iess @ierarchy Problem
1. Dark matter unexpected @@
2. Dark energy 3. Baryogenesis N

4. Neutrino Mass embarrassing

(Mg)” = 3.273.459.429.634.290.543.867.496 473.159(645
- 3.273 459 429 634,290,543 867,496 473,159,643

It is hard to believe that such an extreme cancellation can be an accident...
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The Hierarchy Problem 150

9 ~9 this is not the hierarchy problem
L DO\ g | H ‘ S the regulator is not physical 2
S
P amnd N §
/ N g
| | As uv
\ 2 “
/== Ay —2miln [ — )+ | :
< o
_7T NN 167 ms §

this is the hierarchy problem

the H 1%5 mass is quadratically sensitive to
the mass of any new pamcles that couple to it

Even if we cancel the m§ term at some energy scale, it will reappear
at a different energy scale, because mg will run...

Most of well-known BSM models created to solve this problem:
Technicolor, Supersymmetry, Extra Dimensions, Little Higgs Models
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